1.Icariin pretreatment enhances effect of human periodontal stem cells on M1-type macrophages
Ting YU ; Dongmei LYU ; Hao DENG ; Tao SUN ; Qian CHENG
Chinese Journal of Tissue Engineering Research 2025;29(7):1328-1335
BACKGROUND:Human periodontal stem cells have a certain inhibitory effect on the pro-inflammatory function of M1-type macrophages,and it is not clear whether icariin,which has anti-inflammatory and other pharmacological activities,can enhance the inhibitory effect of human periodontal stem cells on M1-type macrophages. OBJECTIVE:To investigate the effect of icariin on M1 macrophages after pretreatment of human periodontal stem cells. METHODS:Primary human periodontal stem cells were isolated,cultured and characterized.THP-1 was induced and M1-type macrophages were identified by immunofluorescence staining and PCR.Human periodontal stem cells were cultured with α-MEM complete medium containing concentrations of 10-7,10-6,10-5,and 10-4 mol/L icariin,and the cytotoxicity of Icariin on human periodontal stem cells was detected by the CCK-8 assay at 1,3,5,and 7 days,respectively.α-MEM complete medium,untreated α-MEM conditioned medium for human periodontal stem cells and α-MEM conditioned medium for human periodontal stem cells pretreated with icariin for 24 hours were conditioned with RPMI-1640 complete medium in a 1:1 ratio for M1-type macrophages in the control,untreated,and pretreated groups,and 24 hours later,the mRNA expression of inflammatory factors in M1 macrophages was detected by RT-PCR.The protein expression of inflammatory factors in M1 macrophages was detected by ELISA.The expression of surface markers and nuclear factor-κB pathway-related proteins in M1/M2 macrophages was detected by western blot assay. RESULTS AND CONCLUSION:(1)CCK-8 assay results showed that 10-7,10-6,10-5,10-4 mol/L icariin was not cytotoxic to the human periodontal stem cells,and from day 5 onwards,all the concentrations increased the cell viability,and promoted the cell proliferation.10-4 mol/L icariin was selected for follow-up experiment.(2)RT-PCR and ELISA results showed that compared with the control group,the untreated group and the pretreated group both decreased the expression and secretion of interleukin-1β,interleukin-6,and tumor necrosis factor-α of M1-type macrophages(P<0.05),and the pretreated group was lower than the untreated group(P<0.05).(3)Western blot assay results showed that compared with the untreated group,the expression of CD86 was significantly lower in the pretreated group(P<0.05);compared with the control group,the expression of CD206,a surface marker of M2-type macrophages,was elevated in both the untreated and pretreated groups(P<0.01),and it was significantly higher in the pretreated group than in the untreated group(P<0.01).In M1-type macrophages after 24 hours of conditioned culture,compared with the control group,the expression of nuclear factor-κB/P65 was decreased in the untreated group and the pretreated group(P<0.01),and the expression of p-IκBα was decreased only in the pretreated group(P<0.01);the expression of both nuclear factor-κB/P65 and p-IκBα was significantly reduced in the pretreated group compared with the untreated group(P<0.05),while the difference of IκBα in the three groups was not statistically significant.(4)These results indicated that icariin enhanced the inhibitory effect of human periodontal stem cells on M1-type macrophages,and this effect may be related to the inhibition of the nuclear factor-κB signaling pathway of macrophages.
2.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
3.Myricetin attenuates renal fibrosis by activating Nrf2/HO-1 pathway to inhibit oxidative stress
Dong-xue LI ; Zhou HUANG ; Han-yu WANG ; Zhi-hao ZHANG ; Ning-hua TAN ; Xue-yang DENG
Acta Pharmaceutica Sinica 2024;59(2):359-367
This paper investigates the effect of myricetin (MYR) on renal fibrosis induced by unilateral ureteral obstruction (UUO) and common bile duct ligation (CBDL) in mice and its mechanism. The animal experiment has been approved by the Ethics Committee of China Pharmaceutical University (NO: 2022-10-020). Thirty-five ICR mice were divided into control, UUO, UUO+MYR, CBDL and CBDL+MYR groups. H&E and Masson staining were used to detect pathological changes in kidney tissues. Western blot (WB) was used to detect the expression of fibrosis-related proteins in renal tissue, and total superoxide dismutase (SOD) activity detection kit (WST-8) was used to detect the changes of total SOD in renal tissue of CBDL mice.
4.Improvement of sepsis-related acute lung injury through Naringin by regulating TGF-β1/Smad2 signaling pathway
Pingping HE ; Yu DENG ; Yuhan WANG ; Zhen ZHANG ; Hao WANG ; Guangtao PAN
International Journal of Traditional Chinese Medicine 2024;46(4):465-470
Objective:To investigate the protective effect of naringenin on acute lung injury related with sepsis; To discuss its possible mechanism.Methods:Totally 30 male SD rats were randomly divided into sham-operation group, model group, naringin low-, medium- and high-dosage groups, with 6 rats in each group. The sepsis-related acute lung injury model was established by cecal ligation and puncture in all groups except the sham-operation group. After modeling, naringin low-, medium- and high-dosage groups were given naringin 20 mg/kg, 40 mg/kg and 80 mg/kg, respectively for gavage, while the sham-operation group and the model group were given the same volume of distilled water by gavage, once a day, for 2 days. Pathological changes in lung tissue were observed using HE staining. The levels of 1L-1, IL-6 and IL-18 in bronchoalveolar lavage fluid (BALF) were measured by ELISA; the expression of TNF-α in lung tissue was detected by immunofluorescence histopathology; the expressions of TGF-β1, TGF-βR1 and Smad2 were detected by Western Blot. An agonist group and a naringin plus agonist group were set up, with 6 mice in each group, and the expressions of TGF-β1 and Smad2 protein in the lung tissue of each group were detected by immunohistochemical staining to verify the effect of naringin on the expressions of TGF-β1 and Smad2 protein.Results:Compared with the model group, the pathological injury of lung tissue in naringin groups were obviously alleviated, and the levels of IL-1β, IL-6 and IL-18 in BALF decreased ( P<0.01), the protein expressions of TNF-α, TGF-β1, TGF-βR1 and Smad2 in lung tissue decreased ( P<0.01 or P<0.05). Further verification found that the expressions of TGF-β1 and Smad2 in the agonist group increased ( P<0.01), while the expressions of TGF-β1 and Smad2 in the naringin agonist group decreased ( P<0.01). Conclusion:Naringin can reduce the inflammatory response in the lung of the rats to protect against sepsis-related acute lung injury, and its protective effect could be related to the inhibition of the TGF-β1/Smad2 signaling pathway.
5.Indolepropionic acid inhibition of microglial cell M1 polarization for treatment of spinal cord injury
Yilin TENG ; Deshuang XI ; Yanbin FENG ; Yu LIANG ; Hao DENG ; Gaofeng ZENG ; Shaohui ZONG
Chinese Journal of Tissue Engineering Research 2024;28(31):5010-5016
BACKGROUND:Indolepropionic acid has been shown to reduce diabetes-induced central nervous system inflammation.However,there is a lack of research on whether to inhibit microglia M1 polarization for the treatment of spinal cord injury. OBJECTIVE:To investigate the mechanism of indolepropionic acid inhibition of microglial cell M1 polarization for the treatment of spinal cord injury through cell and animal experiments. METHODS:(1)In vitro experiments:BV2 cell viability was assessed using the CCK-8 assay to determine optimal concentrations of indolepropionic acid.Subsequently,BV2 cells were categorized into control group,administration group(50 μmol/L indolepropionic acid),lipopolysaccharide group(100 ng/mL lipopolysaccharide),and treatment group(100 ng/mL lipopolysaccharide + 50 μmol/L indolepropionic acid).Nitric oxide content was quantified using the Griess method.Real-time quantitative PCR and western blot assay were employed to measure mRNA and protein levels of pro-inflammatory factors.Cell immunofluorescence staining was conducted to assess inducible nitric oxide synthase expression.The Seahorse assay was employed to assess glycolytic stress levels in BV2 cells.(2)In vivo experiments:30 SD rats were randomly divided into three groups:sham surgery group,spinal cord injury group,and indolepropionic acid group.Motor function recovery in rats after spinal cord injury was assessed using BBB scoring and the inclined plane test.Immunofluorescence staining of spinal cord tissue was conducted to evaluate the expression of inducible nitric oxide synthase in microglial cells.ELISA was employed to measure protein expression levels of the pro-inflammatory cytokines interleukin-1β and tumor necrosis factor-α in spinal cord tissue. RESULTS AND CONCLUSION:(1)In vitro experiments:Indolepropionic acid exhibited significant suppression of BV2 cell viability when its concentration exceeded 50 μmol/L.Indolepropionic acid achieved this by inhibiting the activation of the nuclear factor κB signaling pathway,thereby suppressing the mRNA and protein expression levels of pro-inflammatory cytokines(interleukin-1β and tumor necrosis factor-α),as well as the M1 polarization marker,inducible nitric oxide synthase,in BV2 cells.Additionally,indolepropionic acid notably reduced the glycolytic level in BV2 cells induced by lipopolysaccharides.(2)In vivo experiments:Following indolepropionic acid intervention in spinal cord injury rats,there was a noticeable increase in BBB scores and the inclined plane test angle.There was also a significant decrease in the number of M1-polarized microglial cells in spinal cord tissue,accompanied by a marked reduction in the protein expression levels of pro-inflammatory cytokines(interleukin-1β and tumor necrosis factor-α).(3)These results conclude that indolepropionic acid promotes functional recovery after spinal cord injury by improving the inflammatory microenvironment through inhibition of microglia M1 polarization.
6.Barley Protein LFBEP-C1 from Lactiplantibacillus plantarum dy-1 Fermented Barley Extracts by Inhibiting Lipid Accumulation in a Caenorhabditis elegans Model
Yan Jia ZHANG ; Ting Meng LIU ; Hao Yu LIU ; Huan DENG ; Juan BAI ; Hua Jian XIE ; Xiang XIAO
Biomedical and Environmental Sciences 2024;37(4):377-386
Objective This study aimed to investigate the lipid-lowering activity of LFBEP-C1 in high glucose-fed Caenorhabditis elegans(C.elegans). Methods In this study,the fermented barley protein LFBEP-C1 was prepared and tested for its potential anti-obesity effects on C.elegans.The worms were fed Escherichia coli OP50(E.coli OP50),glucose,and different concentrations of LFBEP-C1.Body size,lifespan,movement,triglyceride content,and gene expression were analyzed.The results were analyzed using ANOVA and Tukey's multiple comparison test. Results Compared with the model group,the head-swing frequency of C.elegans in the group of LFBEP-C1 at 20 μg/mL increased by 33.88%,and the body-bending frequency increased by 27.09%.This indicated that LFBEP-C1 improved the locomotive ability of C.elegans.The average lifespan of C.elegans reached 13.55 days,and the body length and width of the C.elegans decreased after LFBEP-C1 intake.Additionally,LFBEP-C1 reduced the content of lipid accumulation and triglyceride levels.The expression levels of sbp-1,daf-2,and mdt-15 significantly decreased,while those of daf-16,tph-1,mod-1,and ser-4 significantly increased after LFBEP-C1 intake.Changes in these genes explain the signaling pathways that regulate lipid metabolism. Conclusion LFBEP-C1 significantly reduced lipid deposition in C.elegans fed a high-glucose diet and alleviated the adverse effects of a high-glucose diet on the development,lifespan,and exercise behavior of C.elegans.In addition,LFBEP-C1 regulated lipid metabolism mainly by mediating the expression of genes in the sterol regulatory element-binding protein,insulin,and 5-hydroxytryptamine signaling pathways.
7.Association of Cytokines with Clinical Indicators in Patients with Drug-Induced Liver Injury
Hua Wei CAO ; Ting Ting JIANG ; Ge SHEN ; Wen DENG ; Yu Shi WANG ; Yu Zi ZHANG ; Xin Xin LI ; Yao LU ; Lu ZHANG ; Yu Ru LIU ; Min CHANG ; Ling Shu WU ; Jiao Yuan GAO ; Xiao Hong HAO ; Xue Xiao CHEN ; Ping Lei HU ; Jiao Meng XU ; Wei YI ; Yao XIE ; Hui Ming LI
Biomedical and Environmental Sciences 2024;37(5):494-502
Objective To explore characteristics of clinical parameters and cytokines in patients with drug-induced liver injury(DILI)caused by different drugs and their correlation with clinical indicators. Method The study was conducted on patients who were up to Review of Uncertainties in Confidence Assessment for Medical Tests(RUCAM)scoring criteria and clinically diagnosed with DILI.Based on Chinese herbal medicine,cardiovascular drugs,non-steroidal anti-inflammatory drugs(NSAIDs),anti-infective drugs,and other drugs,patients were divided into five groups.Cytokines were measured by Luminex technology.Baseline characteristics of clinical biochemical indicators and cytokines in DILI patients and their correlation were analyzed. Results 73 patients were enrolled.Age among five groups was statistically different(P=0.032).Alanine aminotransferase(ALT)(P=0.033)and aspartate aminotransferase(AST)(P=0.007)in NSAIDs group were higher than those in chinese herbal medicine group.Interleukin-6(IL-6)and tumor necrosis factor alpha(TNF-α)in patients with Chinese herbal medicine(IL-6:P<0.001;TNF-α:P<0.001)and cardiovascular medicine(IL-6:P=0.020;TNF-α:P=0.001)were lower than those in NSAIDs group.There was a positive correlation between ALT(r=0.697,P=0.025),AST(r=0.721,P=0.019),and IL-6 in NSAIDs group. Conclusion Older age may be more prone to DILI.Patients with NSAIDs have more severe liver damage in early stages of DILI,TNF-α and IL-6 may partake the inflammatory process of DILI.
8.Strategies and Recommendations for the Development of Clinical Machine Learning Predictive Models
Zhengyao HOU ; Jinqi LI ; Yong YANG ; Mengting LI ; Hao SHEN ; Huan CHANG ; Xinyu LIU ; Bo DENG ; Guangjie GAO ; Yalin WEN ; Shiyue LIANG ; Yanqiu YU ; Shundong LEI ; Xingwei WU
Herald of Medicine 2024;43(12):2048-2056
Objective To propose strategies for developing clinical predictive models,aiming to assist researchers in conducting standardized clinical prediction model studies.Methods Literature review was conducted to summarize the operational steps and content for developing clinical predictive models.Then,a methodological framework was summarized and refined through expert consultation.Results The 11-step methodological framework for developing clinical predictive models was obtained by synthesizing the experience of 456 clinical predictive modeling studies and expert consultation,and the details were analyzed and elaborated.Conclusions This study presents methodological strategies and recommendations for the development of clinical predictive models,intended to serve as a guide for researchers.
9.Discovery of the targets and lead compounds of traditional Chinese medicine based on the molecular trajectory of diabetes evolution
Yu ZHANG ; Jiang-lan LONG ; Ai-ting WANG ; Hao LÜ ; Ke-jun DENG ; Hao LIN ; Dan YAN
Acta Pharmaceutica Sinica 2024;59(8):2199-2204
Exploring the action targets (groups) of traditional Chinese medicine (TCM) is an important proposition to promote the innovation and development of TCM, but it has attracted a lot of attention as to whether it is related to the efficacy or the disease. Our team found that the metabolomic signature molecules in the development of diabetes mellitus (DM) were significantly associated with the clinical efficacy of Yuquan Pill through a large clinical sample study. Taking this as a clue, our team intends to expand the information on the omics features of DM development, and discover the key targets (groups) and their lead compounds for the hypoglycemic effect of Yuquan Pill. The project includes: ① Based on the retrospective clinical trials, using omics technology integrated with generative artificial intelligence, mining the characteristic information of proteome and microbiome, forming driving factors together with metabolome characteristic molecules, and characterizing the molecular trajectories of diabetes evolution and their interference by Yuquan Pill; ② Taking the evolving molecular trajectories as a link and pointer, using anthropomorphic modeling and molecular biology techniques such as chemical proteomics to discover the key targets (groups) of Yuquan Pill's hypoglycemic effect, with the prospective clinical samples for validation; ③ Evaluate the overall response of key targets (groups) using graph neural network technology, and search for drug-derived/endogenous lead compounds with proven clinical pathologies and clear mechanisms of action, so as to provide a new paradigm and technology for the discovery of complex active ingredient targets (groups) of TCM that are related to their clinical efficacy, as well as for the discovery of innovative medicines.
10.Development and performance evaluation of an antioxidant gene-knockout microbial sensor for active monitoring of DNA damage effects
Yue YU ; Anyi LI ; Wenjia WANG ; Hao JIANG ; Yulin DENG ; Xiaoqiong LI ; Xuefei LYU ; Rongji DAI
Space Medicine & Medical Engineering 2024;35(2):73-77
Objective The oxidative damage of DNA can be caused by excessive levels of Reactive oxygen species(ROS).Monitoring of DNA oxidative damage enables effective evaluation of ROS damage effects.Although the detection of DNA damage effects based on microbial sensor allows quantitative analysis of oxidative damage,the ROS clearance mechanism existed in bacterial will affect the sensitive of detection.The work of this article is to knockout the key genes of ROS clearance mechanism and construct an antioxidant gene-knock-out microbial sensor.The microbial sensor can realize sensitive monitoring of DNA damage effects and then evaluates the damage effects of cells by ROS.Methods The antioxidant damage genes of bacterial ahpCF,katE and katG were knocked out by λ-Red homologous recombination and antioxidant gene-knockout microbial sensor was constructed.The nalidixic acid sodium salt and UV irradiation were used to characterize the performance for monitoring of DNA damage effects.Results The antioxidant gene-knockout microbial sensors ΔahpC,ΔahpCF/ΔkatEG and ΔahpCF/ΔkatE/ΔkatG were constructed successfully.The results showed that the microbial sensor ΔahpCF/ΔkatE/ΔkatGl had the highest sensitive of damage effects and the limit of detection for nalidixic acid sodium salt was 0.40 μmol/L.In addition,1.80 min of UV irradiation(254 nm)was sufficient to induce a significant fluorescent expression effect in the engineered bacteria.Conclusion In this article,antioxidant gene-knockout microbial sensors had been constructed to realize active and sensitive monitoring of DNA damage effects such as DNA damage reagents and UV irradiation.The sensors could provide an active,effective,and sensitive potential monitoring method for future evaluation of radiation effects in space.

Result Analysis
Print
Save
E-mail