1.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
2.Protective effects and mechanisms of sodium pyruvate on storage lesions in human red blood cells
Haoning CHEN ; Qi MIAO ; Qiang GAO ; Xin SUN ; Shunyu MEI ; Li WANG ; Yun LIAN ; Honglin LUO ; Chenjie ZHOU ; Hao LI
Chinese Journal of Blood Transfusion 2025;38(6):833-838
Objective: To investigate the protective effects and underlying mechanisms of sodium pyruvate (SP) on RBC storage lesions using an oxidative damage model. Methods: Six units of leukocyte-depleted suspended RBCs (discarded for non-infectious reasons within three days post-collection) were randomly assigned to four groups: negative control (NS), positive control (PS), experimental group 1 (SP1), and experimental group 2 (SP2). Oxidative stress was induced in the PS group by the addition of hydrogen peroxide (H
O
), while SP1 and SP2 received SP supplementation at different concentrations (25 mM and 50 mM, respectively) in the presence of H
O
. After 1 hour of incubation, RBC morphology was assessed microscopically, and biochemical indicators including glutathione (GSH), malondialdehyde (MDA), methemoglobin (MetHb), adenosine triphosphate (ATP), and Na
/K
-ATPase activity were measured. Results: RBCs in the PS group exhibited pronounced morphological damage, including cell shrinkage and echinocyte formation, whereas both SP-treated groups showed significantly reduced structural injury. SP treatment led to elevated GSH levels and decreased concentrations of MDA and MetHb, suggesting attenuation of oxidative stress. Additionally, SP enhanced intracellular ATP levels and Na
/K
-ATPase activity, thereby contributing to membrane stability. Notably, the SP2 group (50 mM) demonstrated superior protective effects compared to SP1 (25 mM). Conclusion: Sodium pyruvate effectively attenuates oxidative storage lesions in RBCs, primarily through its antioxidant properties, energy metabolism supporting ability, and celluar membrane stabilizing function. These findings suggest SP as a promising additive for enhancing the quality and safety of stored RBCs.
3.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
4.Discussion on AI-Based Digital Upgrade and Application Practice of Laboratory Animal Centers
Tingjun WANG ; Hao LUO ; Qi CHEN
Laboratory Animal and Comparative Medicine 2025;45(4):473-482
Objective In traditional laboratory animal centers, there are issues such as low efficiency in cage scheduling, insufficient supervision of personnel behavior, and difficulty in upgrading aging equipment. This study aims to upgrade the information system of existing laboratory animal centers by applying multimodal large language model technology. This upgrade intends to achieve real-time perception of the status of animal cages, intelligent supervision of experimental personnel behavior, and automated processing of business workflows, thereby improving management efficiency and precision. Methods An AI-based approach for upgrading laboratory animal center informatization was proposed by the First Affiliated Hospital of Zhejiang University School of Medicine,compatible with different breeding equipments. The system architecture, from the bottom up, consisted of three layers: hardware layer, core algorithm layer, and application layer. The hardware layer was equipped with cameras and high-speed network transmission devices for collecting information on cages and personnel. The core algorithm layer utilized multi-stage image preprocessing technology and multimodal large language model recognition technology to extract and identify image information. The application layer integrated the recognition results with the existing information of the animal center to generate real-time cage occupancy heatmaps, which visually and clearly showed the density distribution of cage usage in the laboratory animal center. Results The AI-based management system achieved a cage recognition accuracy of 98.5% and a correct wearing identification rate of laboratory coats of 98.8%. The average image processing time was 3.7 seconds per image, the effective utilization rate of cages increased by 23%, and the turnover efficiency improved by 35%. In addition, the management system could track and warn against non-compliant behaviors in real time. After intelligent recognition, the system detected more violations, with the violation detection rate increasing by 90.6%. After continuous use for three months, the weekly average number of violations decreased by 54.0% compared to the baseline period. Conclusion This study applies multimodal large language model to the field of laboratory animal management, achieving real-time monitoring and automated management of cage identification, thereby improving management efficiency and precision. The system integrates multi-source data such as visual recognition and behavior analysis, establishing a comprehensive intelligent supervision system for experimental personnel. It provides research institutions with efficient, accurate, and cost-effective management tools, promoting the intelligent development of laboratory animal management.
5. Curcumin plays an anti-osteoporosis role by inhibiting NF-κB signaling pathway to reduce oxidative stress damage to osteogenesis
Tian-Tian XU ; Hao-Ehun TIAN ; Xin-Min YANG ; Qi-Hua QI ; Dong-Hua LUO ; Chang-Gen WANG
Chinese Pharmacological Bulletin 2024;40(1):46-54
Aim To investigate the mechanism of curcumin inhibition of oxidative stress on osteogenic differentiation and its dose-dependent anti-osteoporosis effect. Methods Cellular oxidative stress models were used, different concentrations of curcumin were added to determinethebone formation markers, and the potential signaling pathways involvedwere detected. Meanwhile, the mouse model of osteoporosis ( ovariecto- mized, 0VX) was used to confirm its effect against osteoporosis. Results In vitro experiments found that low concentrations of curcumin (1-10 μmol · L
6.Exploration of potential active ingredients and mechanism of action of Xihuang pill-medicated serum against glioma based on HPLC-Q-TOF-MS/MS, network pharmacology and experimental verification
Jing PAN ; Qi-hai ZHANG ; Hao-wen FAN ; Xia WANG ; Wei-feng YAO ; Hong-bin XU
Acta Pharmaceutica Sinica 2024;59(3):693-703
Qualitative analysis of the ingredients absorbed into blood and their metabolites of Xihuang pill (XHP) were conducted using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF-MS/MS) technology. Network pharmacology was used to explore the potential anticancer mechanisms of the ingredients against glioma, and their specific mechanisms were validated through molecular docking and experimental verification. SD rats were intragastrically administered with XHP, and rat serum samples were collected. Ingredients absorbed into blood and their metabolites were identified based on the retention time of chromatographic peaks, accurate molecular mass, characteristic fragment ions, and comparisons with reference substances and literature data. PharmMapper and SwissTarget Prediction databases were used to obtain the targets of the XHP-medicated serum, while GeneCards, OMIM, PharmGKB, TTD, and DrugBank databases were used to obtain glioma disease targets. The "component-target" network relationship diagram was constructed using Cytoscape 3.9.1 software. The protein-protein interaction (PPI) network diagram was constructed using the STRING database, and the targets were analyzed using GO and KEGG analyses. Molecular docking was used to verify the binding ability of core targets with their corresponding compounds in XHP-medicated serum. The potential mechanism of the anti-glioma effect of 11-keto-
7.Biosensor analysis technology and its research progress in drug development of Alzheimer's disease
Shu-qi SHEN ; Jia-hao FANG ; Hui WANG ; Liang CHAO ; Piao-xue YOU ; Zhan-ying HONG
Acta Pharmaceutica Sinica 2024;59(3):554-564
Biosensor analysis technology is a kind of technology with high specificity that can convert biological reactions into optical and electrical signals. In the development of drugs for Alzheimer's disease (AD), according to different disease hypotheses and targets, this technology plays an important role in confirming targets and screening active compounds. This paper briefly describes the pathogenesis of AD and the current situation of therapeutic drugs, introduces three biosensor analysis techniques commonly used in the discovery of AD drugs, such as surface plasmon resonance (SPR), biolayer interferometry (BLI) and fluorescence analysis technology, explains its basic principle and application progress, and summarizes their advantages and limitations respectively.
8.Effect of Sinisan on Oxidative Stress in Cholestatic Hepatitis Rats Based on Nrf2/HO-1 Signaling Pathway
Dan CAO ; Qi CHEN ; Xiaolu CHEN ; Linzhen CHEN ; Haiyan WANG ; Juhui HAO ; Wei ZHANG ; Zhiqiang MA
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(12):1-7
ObjectiveBased on the nuclear factor erythroid 2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway, this paper explores the effect of Sinisan (SNS) on liver oxidative stress injury in cholestatic hepatitis rats and its mechanism. MethodThirty 6-week-old male SD rats were randomly divided into a control group, model group, low and high dose groups of SNS (2.5 and 5 g·kg-1) and ursodeoxycholic acid group (UDCA, 63 mg·kg-1), with six rats in each group. Rats were administrated for seven consecutive days. On the 5th day, the control group was given olive oil of 10 mL·kg-1, and the other groups were given alpha-naphthalene isothiocyanate (ANIT) of 80 mg·kg-1. The serum biochemical indicator levels of cholestasis and the content of antioxidant factors in rat liver were detected by enzyme-linked immunosorbent assay (ELISA). Hematoxylin-eosin (HE) staining was used to observe the pathological changes in liver tissue. The relative mRNA and protein expressions of Nrf2, HO-1, and quinone oxidoreductase 1 (NQO1) in liver tissue were detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultCompared with the control group, the model group showed a significant increase in the serum biochemical indicator levels of cholestasis and the content of antioxidant factors in liver tissue (P<0.01). There were obvious pathological changes in the model group such as the disordered arrangement of hepatocytes, obvious congestion and necrosis in the portal area, infiltration of inflammatory cells, and destruction of the interlobular bile duct. The relative mRNA and protein expressions of Nrf2, HO-1, and NQO1 in liver tissue were significantly down-regulated in the model group (P<0.05, P<0.01). Compared with the model group, the groups of SNS showed a significant decrease in the serum biochemical indicator levels of cholestasis and the content of antioxidant factors in liver tissue (P<0.01), and the pathological liver injury was obviously improved. The necrotic area was reduced, and the infiltration of inflammatory cells was decreased. In addition, there was a small amount of extravasated blood in the interlobular vein. The relative mRNA and protein expressions of Nrf2, HO-1, and NQO1 in liver tissue were significantly up-regulated (P<0.05, P<0.01). ConclusionSNS can significantly improve liver injury in cholestatic hepatitis rats, and its mechanism may be related to the inhibition of oxidative stress response mediated by the Nrf2/HO-1 signaling pathway.
9.Discussion on the syndrome of toxin and blood stasis in myelodysplastic syndrome from Xuanfu theory
Jing HAO ; Jiaxin LYU ; Yanbo CHANG ; Zihan PENG ; Ziran HU ; Dongyu GUO ; Tianfeng QI ; Dandi HE ; Mingjie GAO ; Jinhuan WANG
International Journal of Traditional Chinese Medicine 2024;46(4):415-419
Myelodysplastic syndrome (MDS) is a malignant hematologic tumor, which is currently difficult to cure. The theory of Xuanfu was proposed by Liu Wansu, which is unique in the clinical evidence of Chinese medicine and is less frequently applied to hematological diseases. The application of Xuanfu theory in myelodysplastic syndrome provides new ideas for the treatment of the disease. The abnormal flow of Qi, blood and fluids caused by the occlusion of the Xuanfu is the cause of toxic stasis obstruction, which is the pathogenesis of toxic stasis obstruction. Thus, the method of dispersion of Bone from Xuanfu, the external treatment of Xuanfu, and regulation of liver qi and Xuanfu help to return to normal of opening and closing function of Xuanfu, and release toxic stasis. In this paper, we analyzed the evidence of toxin-stasis obstruction in myelodysplastic syndrome from the theory of Xuanfu, aiming to provide a feasible theoretical basis for clinical treatment of the disease.
10.Effect of diabetes mellitus on perioperative blood loss and pain after primary total knee arthroplasty
Haodong QI ; Chao LU ; Hanbo XU ; Mengfei WANG ; Yangquan HAO
Chinese Journal of Tissue Engineering Research 2024;28(9):1383-1387
BACKGROUND:Total knee arthroplasty is the main therapeutic regimen for end-stage osteoarthritis.However,diabetes mellitus can affect the treatment effect and prognosis. OBJECTIVE:To explore the effect of diabetes mellitus on perioperative blood loss and postoperative pain in patients undergoing primary total knee arthroplasty. METHODS:A retrospective study was conducted on 154 patients who underwent primary total knee arthroplasty and met the inclusion criteria in the Osteonecrosis and Joint Reconstruction Ward of Xi'an Honghui Hospital Affiliated to Xi'an Jiaotong University from January to April 2021.Patients were divided into a non-diabetic group and a diabetic group according to their diagnosis,with 32 cases in the diabetic group,9 males and 23 females,aged 55 to 80(66.58±7.16)years and 122 cases in the non-diabetic group,34 males and 88 females,aged 44 to 83(66.69±6.63)years.Perioperative blood loss(including total blood loss,hidden blood loss,the falling value of hemoglobin and hematocrit)was calculated for both groups.Visual analog scale scores,hospital for special surgery knee score,and Caprini scores were recorded preoperatively and postoperatively. RESULTS AND CONCLUSION:(1)Total blood loss was significantly lower in the non-diabetic group(729.93±233.83 mL)than that in the diabetic group(853.69±184.91 mL)(P<0.05).Latent hidden blood loss was also significantly lower in the non-diabetic group(624.40±233.19 mL)than that in the diabetic group(749.08±179.49 mL)(P<0.05).(2)In the non-diabetic group,the visual analog scale scores preoperatively and 1 month postoperatively were significantly lower than those in the diabetic group(P<0.05).The differences in visual analog scale scores at 3 days and 3 months postoperatively between the non-diabetic group and the diabetic group were not statistically significant(P>0.05).(3)The hospital for special surgery knee score at 1 month postoperatively was significantly higher in the non-diabetic group than that in the diabetic group(P<0.05).There was no significant difference in hospital for special surgery knee score between the two groups at 3 months postoperatively(P>0.05).(4)There was no statistically significant difference in preoperative and postoperative Caprini scores between the two groups(P>0.05).(5)It is concluded that having diabetes increases total and occult hidden blood loss in primary total knee arthroplasty.In the short term after total knee arthroplasty,diabetes increases the patient's pain and affects the recovery of joint function,but the negative effects fade with time.

Result Analysis
Print
Save
E-mail