1.Wdr63 Deletion Aggravates Ulcerative Colitis Likely by Affecting Th17/Treg Balance and Gut Microbiota
Hao ZHU ; Meng-Yuan ZHU ; Yang-Yang CAO ; Qiu-Bo YANG ; Zhi-Peng FAN
Progress in Biochemistry and Biophysics 2025;52(1):209-222
ObjectiveUlcerative colitis is a prevalent immunoinflammatory disease. Th17/Treg cell imbalance and gut microbiota dysregulation are key factors in ulcerative colitis pathogenesis. The actin cytoskeleton contributes to regulating the proliferation, differentiation, and migration of Th17 and Treg cells. Wdr63, a gene containing the WD repeat domain, participates in the structure and functional modulation of actin cytoskeleton. Recent research indicates that WDR63 may serve as a regulator of cell migration and metastasis via actin polymerization inhibition. This article aims to explore the effect of Wdr63 deletion on Th17/Treg cells and ulcerative colitis. MethodsWe constructed Wdr63-/- mice, induced colitis in mice using dextran sulfate sodium salt, collected colon tissue for histopathological staining, collected mesenteric lymph nodes for flow cytometry analysis, and collected healthy mouse feces for microbial diversity detection. ResultsCompared with wild-type colitis mice, Wdr63-/- colitis mice had a more pronounced shortening of colonic tissue, higher scores on disease activity index and histological damage index, Treg cells decreased and Th17 cells increased in colonic tissue and mesenteric lymph nodes, a lower level of anti-inflammatory cytokine IL-10, and a higher level of pro-inflammatory cytokine IL-17A. In addition, WDR63 has shown positive effects on maintaining intestinal microbiota homeostasis. It maintains the balance of Bacteroidota and Firmicutes, promoting the formation of beneficial intestinal bacteria linked to immune inflammation. ConclusionWdr63 deletion aggravates ulcerative colitis in mice, WDR63 inhibits colonic inflammation likely by regulating Th17/Treg balance and maintains intestinal microbiota homeostasis.
2.Effects of honey-processed Astragalus on energy metabolism and polarization of RAW264.7 cells
Hong-chang LI ; Ke PEI ; Wang-yang XIE ; Xiang-long MENG ; Zi-han YU ; Wen-ling LI ; Hao CAI
Acta Pharmaceutica Sinica 2025;60(2):459-470
In this study, RAW264.7 cells were employed to investigate the effects of honey-processed
3.Chemical consitituents and hypoglycemic activity of Qinhuai No. 1 Rehmannia glutinosa
Meng YANG ; Zhi-you HAO ; Xiao-lan WANG ; Chao-yuan XIAO ; Jun-yang ZHANG ; Shi-qi ZHOU ; Xiao-ke ZHENG ; Wei-sheng FENG
Acta Pharmaceutica Sinica 2025;60(1):205-210
Eight compounds were isolated and purified from the ethyl acetate part of 70% acetone extract of
4.Effect of Exercise Intervention on Bone Mineral Density in Postmenopausal Osteoporosis Woman——a Network Meta-analysis
Ying HAO ; Ning-Ning YANG ; Meng-Ying SUN ; Xiao-Bin ZHOU ; Zhuo CHEN
Progress in Biochemistry and Biophysics 2025;52(6):1544-1559
Postmenopausal osteoporosis (PMOP) is a chronic metabolic bone disease caused by a decrease in estrogen levels. With the acceleration of population aging process, the public health burden caused by it is becoming increasingly severe. The prevalence rate of osteoporosis in people over 65 years old in China is as high as 32%, which is especially prominent after menopause, which is about 5 times that of elderly men. About 40% of postmenopausal women are at risk of osteoporotic fractures, with a disability rate of up to 50% and a fatality rate of about 20%. The prevention and treatment of osteoporosis has become a major public health issue of global concern, and it is particularly urgent to develop reasonable and effective prevention and treatment programs and explore their scientific basis. Exercise is an important non-drug means for the prevention and treatment of PMOP, it can improve estrogen levels and the expression of bone formation transcription factors, and inhibit the levels of proinflammatory factors and bone resorption markers, macroscopically manifested by the improvement of bone microstructure and bone density. However, the effectiveness of exercise in improving bone mineral density (BMD) remains controversial. Some studies revealed significant changes of bone to mechanical stimulation, while others showed no significant effect of mechanical training, this heterogeneity in bone adapt to mechanical stimulation is particularly evident in postmenopausal women. Although the evidence that a wide range of exercise programs can improve osteoporosis, the optimal solution to address bone mineral loss remains unclear. The most effective exercise type, dosage and personalized adaptation are still being determined. This study will fully consider the differences in gender and hormone levels, searching and screening randomized controlled trials of PubMed, CNKI and other databases regarding exercise improving bone mineral density in women with PMOP. Strictly following the PRISMA guidelines to reviewed and compared the effects of different types of exercise modalities on BMD at different sites in women with PMOP by network Meta-analysis, to provide theoretical guidance to maintain or improve BMD in women with PMOP.
5.Analysis of The Characteristics of Brain Functional Activity in Gross Motor Tasks in Children With Autism Based on Functional Near-infrared Spectroscopy Technology
Wen-Hao ZONG ; Qi LIANG ; Shi-Yu YANG ; Feng-Jiao WANG ; Meng-Zhao WEI ; Hong LEI ; Gui-Jun DONG ; Ke-Feng LI
Progress in Biochemistry and Biophysics 2025;52(8):2146-2162
ObjectiveBased on functional near-infrared spectroscopy (fNIRS), we investigated the brain activity characteristics of gross motor tasks in children with autism spectrum disorder (ASD) and motor dysfunctions (MDs) to provide a theoretical basis for further understanding the mechanism of MDs in children with ASD and designing targeted intervention programs from a central perspective. MethodsAccording to the inclusion and exclusion criteria, 48 children with ASD accompanied by MDs were recruited into the ASD group and 40 children with typically developing (TD) into the TD group. The fNIRS device was used to collect the information of blood oxygen changes in the cortical motor-related brain regions during single-handed bag throwing and tiptoe walking, and the differences in brain activation and functional connectivity between the two groups of children were analyzed from the perspective of brain activation and functional connectivity. ResultsCompared to the TD group, in the object manipulative motor task (one-handed bag throwing), the ASD group showed significantly reduced activation in both left sensorimotor cortex (SMC) and right secondary visual cortex (V2) (P<0.05), whereas the right pre-motor and supplementary motor cortex (PMC&SMA) had significantly higher activation (P<0.01) and showed bilateral brain region activity; in terms of brain functional integration, there was a significant decrease in the strength of brain functional connectivity (P<0.05) and was mainly associated with dorsolateral prefrontal cortex (DLPFC) and V2. In the body stability motor task (tiptoe walking), the ASD group had significantly higher activation in motor-related brain regions such as the DLPFC, SMC, and PMC&SMA (P<0.05) and showed bilateral brain region activity; in terms of brain functional integration, the ASD group had lower strength of brain functional connectivity (P<0.05) and was mainly associated with PMC&SMA and V2. ConclusionChildren with ASD exhibit abnormal brain functional activity characteristics specific to different gross motor tasks in object manipulative and body stability, reflecting insufficient or excessive compensatory activation of local brain regions and impaired cross-regions integration, which may be a potential reason for the poorer gross motor performance of children with ASD, and meanwhile provides data support for further unraveling the mechanisms underlying the occurrence of MDs in the context of ASD and designing targeted intervention programs from a central perspective.
6.Single-cell Protein Localization Method Based on Class Perception Graph Convolutional Network
Hao-Yang TANG ; Xin-Yue YAO ; Meng-Meng WANG ; Si-Cong YANG
Progress in Biochemistry and Biophysics 2025;52(9):2417-2427
ObjectiveThis study proposes a novel single-cell protein localization method based on a class perception graph convolutional network (CP-GCN) to overcome several critical challenges in protein microscopic image analysis, including the scarcity of cell-level annotations, inadequate feature extraction, and the difficulty in achieving precise protein localization within individual cells. The methodology involves multiple innovative components designed to enhance both feature extraction and localization accuracy. MethodsFirst, a class perception module (CPM) is developed to effectively capture and distinguish semantic features across different subcellular categories, enabling more discriminative feature representation. Building upon this, the CP-GCN network is designed to explore global features of subcellular proteins in multicellular environments. This network incorporates a category feature-aware module to extract protein semantic features aligned with label dimensions and establishes a subcellular relationship mining module to model correlations between different subcellular structures. By doing so, it generates co-occurrence embedding features that encode spatial and contextual relationships among subcellular locations, thereby improving feature representation. To further refine localization, a multi-scale feature analysis approach is employed using the K-means clustering algorithm, which classifies multi-scale features within each subcellular category and generates multi-cell class activation maps (CAMs). These CAMs highlight discriminative regions associated with specific subcellular locations, facilitating more accurate protein localization. Additionally, a pseudo-label generation strategy is introduced to address the lack of annotated single-cell data. This strategy segments multicellular images into single-cell images and assigns reliable pseudo-labels based on the CAM-predicted regions, ensuring high-quality training data for single-cell analysis. Under a transfer learning framework, the model is trained to achieve precise single-cell-level protein localization, leveraging both the extracted features and pseudo-labels for robust performance. ResultsExperimental validation on multiple single-cell test datasets demonstrates that the proposed method significantly outperforms existing approaches in terms of robustness and localization accuracy. Specifically, on the Kaggle 2021 dataset, the method achieves superior mean average precision (mAP) metrics across 18 subcellular categories, highlighting its effectiveness in diverse protein localization tasks. Visualization of the generated CAM results further confirms the model’s capability to accurately localize subcellular proteins within individual cells, even in complex multicellular environments. ConclusionThe integration of the CP-GCN network with a pseudo-labeling strategy enables the proposed method to effectively capture heterogeneous cellular features in protein images and achieve precise single-cell protein localization. This advancement not only addresses key limitations in current protein image analysis but also provides a scalable and accurate solution for subcellular protein studies, with potential applications in biomedical research and diagnostic imaging. The success of this method underscores the importance of combining advanced deep learning architectures with innovative training strategies to overcome data scarcity and improve localization performance in biological image analysis. Future work could explore the extension of this framework to other types of microscopic imaging and its application in large-scale protein interaction studies.
7.Interpretation of the Industry Standard Robotically-assisted Laparoscopic Surgical System
Chenxu YANG ; Shu LI ; Hao WANG ; Xiangfeng MENG
Medical Journal of Peking Union Medical College Hospital 2025;16(5):1199-1206
With the widespread application of robotic technology in surgery, multiple robot-assisted laparoscopic endoscopic surgical systems are currently in the R&D phase, highlighting an urgent need for establishing a scientific and standardized quality evaluation framework. In 2024, the National Medical Products Administration issued the standard YY/T 1941-2024, entitled
8.Expert Consensus on Clinical Diseases Responding Specifically to Traditional Chinese Medicine: Threatened Abortion
Xinchun YANG ; Shuyu WANG ; Huilan DU ; Songping LUO ; Zhe JIN ; Rong LI ; Xiangyan RUAN ; Qin ZHANG ; Xiaoling FENG ; Shicai CHEN ; Fengjie HE ; Shaobin WEI ; Qun LU ; Yanqin WANG ; Yang LIU ; Qingwei MENG ; Zengping HAO ; Ying LI ; Mei MO ; Xiaoxiao ZHANG ; Ruihua ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):241-246
Threatened abortion is a common disease of obstetrics and gynecology and one of the diseases responding specifically to traditional Chinese medicine (TCM). The China Association of Chinese Medicine organized experts in TCM obstetrics and gynecology, Western medicine obstetrics and gynecology, and pharmacology to deeply discuss the advantages of TCM and integrated Chinese and Western medicine treatment as well as the medication plans for threatened abortion. After discussion, the experts concluded that chromosome, endocrine, and immune abnormalities were the key factors for the occurrence of threatened abortion, and the Qi and blood disorders in thoroughfare and conception vessels were the core pathogenesis. In the treatment of threatened abortion, TCM has advantages in preventing miscarriages, alleviating clinical symptoms and TCM syndromes, relieving anxiety, regulating reproductive endocrine and immune abnormalities, personalized and diversified treatment, enhancing efficiency and reducing toxicity, and preventing the disease before occurrence. The difficulty in diagnosis and treatment of threatened abortion with traditional Chinese and Western medicine lies in identifying the predictors of abortion caused by maternal factors and the treatment of thrombophilia. Recurrent abortion is the breakthrough point of treatment with integrated traditional Chinese and Western medicine. It is urgent to carry out high-quality evidence-based medicine research in the future to improve the modern diagnosis and treatment of threatened abortion with TCM.
9. Association between index finger and ring finger length ratios and polymorphism of homeobox A11 gene locus among Ningxia college students
Meng-Yi YANG ; Shi-Bo NIU ; Jing ZHANG ; Jie DANG ; Zhan-Bing MA ; Hong LU ; Zheng-Hao HUO
Acta Anatomica Sinica 2024;55(1):62-66
Objective To investigate the association between the index finger and ring finger length ratio (2D ∶ 4D) and of four loci (rs6461992‚ rs6968828‚ rs7801581‚ rs17427875) polymorphism of homeobox (HOX) A11 gene among Ningxia college students. Methods Digit camera was used to collect frontal hand photos of 667 Han college students (348 males and 319 females) from Ningxia province; Image analysis software was used to mark the anatomical points and measure finger lengths of the index and ring fingers of both hands; multiplex PCR was used to detect each locus polymorphisms of HOXA11 gene; statistical software was used to compare and analyze the differences and associations of 2D ∶4D and gene polymorphisms between different genders. Results Among Ningxia Han college students‚ both left hand and right hand 2D ∶ 4D were significantly higher in females than those of in males (all P< 0. 05)‚ and there were no significant sex differences in right-left hand 2D ∶4D; the genotypes and allele frequencies of rs7801581 locus of HOXA11 gene differed significantly between genders (all P < 0. 05)‚ and none of the other locus polymorphisms showed any significant sex differences; only female left hand 2D ∶4D was significantly associated with rs6461992 locus genotype in the relationship between 2D ∶4D and HOXA11 polymorphisms (P<0. 05). Conclusion There were significant sex differences in 2D ∶ 4D among Han college students in Ningxia‚ and the rs6461992 locus polymorphism of HOXA11 gene may be associated with the formation of 2D ∶4D in females.
10.Association between index-ring finger length ratio and polymorphisms of 6 phalange-bone development related genes
Meng-Yi YANG ; Shi-Bo NIU ; Jing ZHANG ; Liang PENG ; Jie DANG ; Zhan-Bing MA ; Hong LU ; Zheng-Hao HUO
Acta Anatomica Sinica 2024;55(2):181-187
Objective To investigate the association of 13 single nucleotide polymorphism(SNP)sites in 6 phalange-bone development related genes[fibroblast growth factor receptor 2(FGFR2),indian hedgehog signaling molecule(IHH),Msh homeobox 1(MSX1),Runx family transcription factor 2(RUNX2),SRY-box transcription factor 9(SOX9),Wnt family member 5A(WNT5A)]with human index-ring finger length ratio(2D∶4D).Methods Digital cameras were used to take frontal photographs of the hands of 731 college students(358 males and 373 females)in Ningxia,and image analysis software was used to mark anatomical points and measure finger lengths of index(2th)and ring(4th);genotyping of 13 SNP sites(rs1047057,rs755793,rs41258305,rs3731881,rs3100776,rs12532,rs3821949,rs45585135,rs3749863,rs1042667,rs12601701,rs1829556,rs3732750)for 6 genes by multiplex PCR;One-Way ANOVA or independent sample t-test indirectly assessed the association between 2D∶4D and 13 SNP sites.Results Both left and right hand 2D∶4D were significantly higher in females than males in Ningxia college students(all P<0.01);no statistically significant differences in genotype and allele frequencies of the 13 SNP sites among different sexes(all P>0.05);among different sexes,male left hand 2D∶4D was significantly associated with the genotype of SOX9 gene rs12601701 site(P<0.05)and right hand 2D∶4D was significantly associated with the genotype of WNT5A gene rs1829556 site(P<0.05);the female right hand 2D∶4D was significantly associated with the MSX1 gene rs12532(P<0.01)and rs3821949(P<0.05)sites genotypes.Conclusion SOX9(rs12601701),WNT5A(rs1829556)and MSX1(rs12532 and rs3821949)gene polymorphisms may be associated with the formation of 2D∶4D in Ningxia population.

Result Analysis
Print
Save
E-mail