1.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
		                        		
		                        			
		                        			Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects. 
		                        		
		                        		
		                        		
		                        	
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
4.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
		                        		
		                        			 Background:
		                        			s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated. 
		                        		
		                        			Methods:
		                        			In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs. 
		                        		
		                        			Results:
		                        			Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment. 
		                        		
		                        			Conclusions
		                        			We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression. 
		                        		
		                        		
		                        		
		                        	
5.Establishment of a closed-loop management system for the whole-process traceability of outpatient drugs based on internet of things and blockchain technology
Yanjing MA ; Jun HANG ; Yanan WANG ; Wenting JIANG ; Aiming SHI ; Jie PAN ; Peng QIAO
China Pharmacy 2025;36(20):2502-2506
		                        		
		                        			
		                        			OBJECTIVE To establish a closed-loop management system for the whole-process traceability of outpatient drugs based on internet of things (IoT) and blockchain technology, and evaluate its implementation effects. METHODS A closed-loop management system for the whole-process traceability of outpatient drugs covering the entire drug lifecycle was designed using drug traceability codes integrated with IoT and blockchain technology. System effectiveness was evaluated from three dimensions: work efficiency, medication management quality and data safety by comparing indicators such as the acceptance time of incoming drugs and the number of collected drug traceability codes before the system implementation (October to December 2024) and after the system implementation (January to March 2025). RESULTS A closed-loop management system for the whole-process traceability of outpatient drugs, centered around the drug traceability code management system, was successfully established. The acceptance time for incoming drugs was shortened from (4.65±0.26) h before implementation to (0.34±0.08) h after implementation (P< 0.05). The number of collected drug traceability codes increased from 419 018 to 1 236 522, and the coverage rate of traceability codes rose from 28.36% to 89.88% (P<0.05). The time pharmacists spent on drug expiry management per week decreased from (128.40±19.20) min to (0.56±0.13) min (P<0.05), and the dispensing time for a single prescription (excluding a part of injections and repackaged drugs) was reduced from (143.25±17.67) s to (15.24±10.08) s (P<0.05). The time for drug return was reduced from 129.90 (122.32, 137.00) s to 104.36 (89.91, 117.33) s(P<0.05); the number of drug dispensing errors decreased from 2 cases to 0 cases. After the system was launched, there were no data security incidents in our outpatient pharmacy. CONCLUSIONS The constructed closed-loop management system for the whole-process traceability of outpatient drugs can significantly enhance drug traceability accuracy and drug management quality, improve pharmacist work efficiency, and reduce drug management risks, thus providing a feasible solution for the digital transformation of hospital pharmaceutical services.
		                        		
		                        		
		                        		
		                        	
6.Effects of miR-4531/CX3CL1 signaling pathway on the vascular injury in preeclampsia in vitro
Man WANG ; Jun LI ; Hang LI ; Qing SONG ; Yan LIU ; Haili WANG ; Xiao WANG ; Qunxian CHENG ; Zheng HU ; Ling XU
Chinese Journal of Clinical Medicine 2024;31(6):868-874
		                        		
		                        			
		                        			Objective To investigate the effects of miR-
		                        		
		                        	
7.Causal relationship between thyroid dysfunction and sepsis: a bidirectional two-sample Mendelian randomization
Jiawen YUAN ; Dexiang WANG ; Yuhao HANG ; Qinyun LU ; Jian WANG ; Jun LU ; Lu CHENG
Chinese Critical Care Medicine 2024;36(7):734-739
		                        		
		                        			
		                        			Objective:To explore the causal relationship between thyroid dysfunction and sepsis based on the bidirectional two-sample Mendelian randomization (MR) method.Methods:The genome-wide association study (GWAS) dataset were selected to screen single nucleotide polymorphisms (SNP) associated with thyroid dysfunction as instrumental variable (IV) for genetic variation, using hypothyroidism and hyperthyroidism as exposure factor and sepsis as outcome factor. Potential causal relationship between thyroid dysfunction and sepsis was analyzed using a bidirectional two-sample MR method primary analysis method of inverse-variance weighted (IVW). Potential pleiotropic analysis of SNP was performed using the MR Egger regression intercept test. Sensitivity analysis was performed using the "leave one out" test. Reverse MR method was used to prove the causal relationship.Results:The GWAS data were screened based on the three main assumptions of MR, resulting in 101 SNP strongly associated with hypothyroidism and 10 SNP strongly associated with hyperthyroidism entering the MR analysis. The results of the MR using the IVW method showed that the risk of sepsis in individuals with hypothyroidism was 2.293 times higher than those without hypothyroidism [odds ratio ( OR) = 2.293, 95% confidence interval (95% CI) was 1.199-4.382, P = 0.012]. There was no significant difference in the risk of sepsis between hyperthyroid and non-hyperthyroid populations ( OR = 1.049, 95% CI was 0.999-1.100, P = 0.560). MR Egger regression intercept test showed that the included SNP did not have pleiotropy, and the MR-PRESSO test did not find outliers. Sensitivity analysis suggested that the results of MR were stable. The results of the reverse MR analysis showed that the reverse causal relationship between hyperthyroidism and sepsis was not proved ( OR = 0.996, 95% CI was 0.988-1.004, P = 0.338), which further confirmed the robust MR analysis result. Conclusion:The results of the bidirectional two-sample MR analysis show that hypothyroidism can increase the risk of sepsis onset, while there is no causal relationship between hyperthyroidism and sepsis.
		                        		
		                        		
		                        		
		                        	
8.Multimodal image fusion-assisted endoscopic evacuation of spontaneous intracerebral hemorrhage
Chao ZHANG ; Juan LI ; Ping-Li WANG ; Hua-Yun CHEN ; Yu-Hang ZHAO ; Ning WANG ; Zhi-Tao ZHANG ; Yan-Wei DANG ; Hong-Quan WANG ; Jun WANG ; Chu-Hua FU
Chinese Journal of Traumatology 2024;27(6):340-347
		                        		
		                        			
		                        			Purpose::Although traditional craniotomy (TC) surgery has failed to show benefits for the functional outcome of intracerebral hemorrhage (ICH). However, a minimally invasive hematoma removal plan to avoid white matter fiber damage may be a safer and more feasible surgical approach, which may improve the prognosis of ICH. We conducted a historical cohort study on the use of multimodal image fusion-assisted neuroendoscopic surgery (MINS) for the treatment of ICH, and compared its safety and effectiveness with traditional methods.Methods::This is a historical cohort study involving 241 patients with cerebral hemorrhage. Divided into MINS group and TC group based on surgical methods. Multimodal images (CT skull, CT angiography, and white matter fiber of MRI diffusion-tensor imaging) were fused into 3 dimensional images for preoperative planning and intraoperative guidance of endoscopic hematoma removal in the MINS group. Clinical features, operative efficiency, perioperative complications, and prognoses between 2 groups were compared. Normally distributed data were analyzed using t-test of 2 independent samples, Nonnormally distributed data were compared using the Kruskal-Wallis test. Meanwhile categorical data were analyzed via the Chi-square test or Fisher’s exact test. All statistical tests were two-sided, and p < 0.05 was considered statistically significant. Results::A total of 42 patients with ICH were enrolled, who underwent TC surgery or MINS. Patients who underwent MINS had shorter operative time ( p < 0.001), less blood loss ( p < 0.001), better hematoma evacuation ( p =0.003), and a shorter stay in the intensive care unit ( p =0.002) than patients who underwent TC. Based on clinical characteristics and analysis of perioperative complications, there is no significant difference between the 2 surgical methods. Modified Rankin scale scores at 180 days were better in the MINS than in the TC group ( p =0.014). Conclusions::Compared with TC for the treatment of ICH, MINS is safer and more efficient in cleaning ICH, which improved the prognosis of the patients. In the future, a larger sample size clinical trial will be needed to evaluate its efficacy.
		                        		
		                        		
		                        		
		                        	
9.Extracellular volume fraction based on CT for predicting macrotrabecular-massive hepatocellular carcinoma
Jiale HANG ; Wenjian WANG ; Xin YANG ; Xiuchun TIAN ; Jianxiong FU ; Jun SUN ; Jing YE ; Xianfu LUO
Chinese Journal of Interventional Imaging and Therapy 2024;21(7):431-435
		                        		
		                        			
		                        			Objective To investigate the value of extracellular volume fraction(ECV)based on CT for predicting macrotrabecular-massive hepatocellular carcinoma(MTM-HCC).Methods Data of 23 MTM-HCC(MTM-HCC group)and 56 non-MTM-HCC(nMTM-HCC group)patients were retrospectively analyzed,and CT manifestations were compared between groups.CT values of abdominal aorta(P-CTabdominal aorta,E-CTabdominal aorta),tumors(P-CTtumor,E-CTtumor)and non-tumor liver parenchyma(P-CTliver,E-CTliver)in plain phase(P)and enhancement equilibrium phase(E)CT were measured,then ECV of tumors and liver parenchyma were calculated,and ECV-related parameters were compared between groups.Receiver operating characteristic curves were drawn,and area under the curve(AUC)was calculated to evaluate the predictive efficacy of ECV-related parameters for predicting MTM-HCC.Results No significant difference of CT manifestations was found between groups(all P>0.05).E-CTtumor,Δltumor(absolute enhancement CT value of the tumor area)and ECVtumor in MTM-HCC group were all lower than those in nMTM-HCC group(all P<0.01).The AUC of E-CTtumor,Δtumor and ECVtumor for predicting MTM-HCC was 0.74,0.77 and 0.87,respectively,and the AUC of ECVtumor was higher than that of E-CTtumor and Δtumor(Z=2.271,2.557,P=0.023,0.011).Conclusion ECV based on CT could be used to effectively predict MTM-HCC.
		                        		
		                        		
		                        		
		                        	
10.Evaluation and optimization of metagenomic sequencing platforms for bloodstream infection samples
Xin PENG ; Hang FAN ; Meng-Nan CUI ; Lei LIN ; Guang-Qian PEI ; Yun-Fei WANG ; Xiu-Juan ZUO ; Xiao-Feng FANG ; Yan GUO ; Yu-Jun CUI
Chinese Journal of Zoonoses 2024;40(10):928-934
		                        		
		                        			
		                        			This study was aimed at comparing performance differences among three metagenomic sequencing platforms,MGISEQ-2000,Illumina NextSeq 2000,and Ion GeneStudio S5 Plus,to optimize the sequencing process for trace samples.The three sequencing platforms were used to perform high-throughput sequencing on DNA standards and simulated samples.Through analysis of the quality of raw data and microbial detection capabilities,systematic differences among platforms were compared.The sequencing results were optimized for trace samples by incorporation of exogenous nucleic acids during the li-brary preparation process.In terms of data output per batch and base quality,MGISEQ-2000 surpassed the other two plat-forms.Illumina NextSeq 2000 had the lowest proportion of duplicate reads,whereas Ion GeneStudio S5 Plus had the highest proportion,and significant differences were observed across platforms(P<0.001).In sequencing uniformity,MGISEQ-2000 and Illumina NextSeq 2000 were superior to Ion GeneStudio S5 Plus.MGISEQ-2000 provided a substantial advantage in microbial detection capability(P<0.001),but the advantage diminished with decreasing bacterial fluid concentration.Ion GeneStudio S5 Plus had the shortest duration for single-batch sequencing.Moreo-ver,for trace samples with DNA content ≤0.05 ng,the experi-mental group(with added exogenous nucleic acids)achieved a higher number of reads than the control group(without exogenous nucleic acids),with a 11.09±8.03 fold increase.In conclu-sion,the different sequencing platforms each had advantages and disadvantages,thus allowing researchers to choose the appro-priate platform according to specific needs.Furthermore,the addition of exogenous nucleic acids improved the microorganism detection efficiency,and provided better support for subsequent diagnosis and evaluation of results.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail