1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
5.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
7.Chlorhexidine and Fondaparinux-Induced Kounis Syndrome: a Case Report
Fangzheng YU ; Yajing WANG ; Hang LIN ; Lifeng ZHANG ; Yuhui ZHU ; Xiaomeng SHI ; Huimin ZHOU ; Nan LIN ; Xiang GAO
JOURNAL OF RARE DISEASES 2025;4(3):334-340
Kounis syndrome is an acute coronary syndrome triggered by an allergic reaction, which is clinically rare and frequently subject to misdiagnosis or missed diagnosis. This article presents a case report of a 70-year-old male patient who developed a rash, pruritus, and chest pain following colon polyp resection. Coronary angiography revealed occlusion of the left anterior descending artery, and blood flow was restored after stent implantation. However, the patient experienced recurrent symptoms accompanied by loss of consciousness. Drug skin tests confirmed positive reactions to chlorhexidine and fondaparinux sodium, leading to a diagnosis of type Ⅱ Kounis syndrome. By avoiding allergenic drugs and combining antihistamines with symptomatic treatment to correct myocardial ischemia, the patient′s clinical symptoms significantly improved, and he eventually recovered and was discharged from the hospital. This case underscores the importance of maintaining vigilance for this syndrome in patients with allergies accompanied by chest pain and promptly identifying and avoiding allergens.
8.Differential Analysis of Erythrocyte Flexibility of PbK173 Artemisinin-sensitive Strains
Hongying ZHOU ; Wenhui XU ; Miyi YANG ; Hang SHI ; Lanfang LI ; Guihua YU ; Canghai LI ; Huajing WANG
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(7):95-103
ObjectiveTo detect the flexibility differences of Plasmodium berghei K173 (PbK173)-infected red blood cells with varying degrees of sensitivity to artemisinin-based drugs and to preliminarily explore the underlying mechanisms of the differences. MethodA total of 102 specific-pathogen-free (SPF) male C57BL/6 mice were randomly divided into three groups, with 30 mice each in the control group and PbK173-resistant (PbK173-R) group, and 42 mice in the PbK173-sensitive (PbK173-S) group. Except for the control group, the rest groups were vaccinated with 1×107 PbK173-S/PbK173-R infected red blood cells to establish a mouse malaria model. During the administration and recovery periods (control group, PbK173-R/PbK173-S), dihydroartemisinin (DHA, 40 mg·kg-1) and malaridine (MD, 6 mg·kg-1) were administered continuously for four days. Peripheral blood was taken from the PbK173-S/PbK173-R groups with an infection rate equal to or greater than 20%. Peripheral blood and each organ were taken on the first day at the end of administration (dosing period) and on the fifth day at the end of administration (recovery period), and blood parameters and organ indices of each group were examined. The osmotic fragility of peripheral blood red blood cells in each group was detected using the red blood cell osmotic fragility test. Western blot was applied to determine the levels of Piezo1 and Band3 proteins in the red blood cell membrane. ResultDuring the administration and recovery periods, there were no significant differences between the PbK173-S MD group and the DHA group. During the administration period, there were no significant differences in hematological parameters between PbK173-S and PbK173-R in the MD group. However, during the recovery period, the red blood cell count, hemoglobin concentration and hematocrit of the PbK173-R group were significantly higher than those of the PbK173-S group (P<0.05) in the MD group. Compared with that of the control group, the osmotic fragility of the PbK173-S/PbK173-R groups was significantly enhanced (P<0.01), and the osmotic fragility of the PbK173-S group was significantly stronger than that of the PbK173-R group (P<0.01). The osmotic fragility of red blood cells in the PbK173-S group during the administration period was significantly stronger than that in the control group and PbK173-R group during the administration period (P<0.01). The osmotic fragility of red blood cells in the PbK173-R group during the recovery period was significantly higher than that in the control group during the administration period and the PbK173-S group during the recovery period (P<0.05). Compared with those in the control group, the Piezo1 protein and Band3 protein in the red blood cell membrane of the PbK173-S group were significantly reduced (P<0.01). Compared with those in the PbK173-R group, the Piezo1 protein and Band 3 protein in the red blood cell membrane of the PbK173-S group were significantly reduced. ConclusionThe flexibility of PbK173-infected red blood cells with different sensitivities to artemisinins differed. Plasmodium-infected red blood cells significantly reduced the levels of Piezo1 and Band3 proteins in the red blood cell membrane, and the erythrocyte flexibility exhibited a decreasing trend in the following order: normal group, PbK173-R group, and PbK173-S group.
9. Mechanism and experimental validation of Zukamu granules in treatment of bronchial asthma based on network pharmacology and molecular docking
Yan-Min HOU ; Li-Juan ZHANG ; Yu-Yao LI ; Wen-Xin ZHOU ; Hang-Yu WANG ; Jin-Hui WANG ; Ke ZHANG ; Mei XU ; Dong LIU ; Jin-Hui WANG
Chinese Pharmacological Bulletin 2024;40(2):363-371
Aim To anticipate the mechanism of zuka- mu granules (ZKMG) in the treatment of bronchial asthma, and to confirm the projected outcomes through in vivo tests via using network pharmacology and molecular docking technology. Methods The database was examined for ZKMG targets, active substances, and prospective targets for bronchial asthma. The protein protein interaction network diagram (PPI) and the medication component target network were created using ZKMG and the intersection targets of bronchial asthma. The Kyoto Encyclopedia of Genes and Genomics (KEGG) and gene ontology (GO) were used for enrichment analysis, and network pharmacology findings were used for molecular docking, ovalbumin (OVA) intraperitoneal injection was used to create a bronchial asthma model, and in vivo tests were used to confirm how ZKMG affected bronchial asthma. Results There were 176 key targets for ZKMG's treatment of bronchial asthma, most of which involved biological processes like signal transduction, negative regulation of apoptotic processes, and angiogenesis. ZKMG contained 194 potentially active components, including quercetin, kaempferol, luteolin, and other important components. Via signaling pathways such TNF, vascular endothelial growth factor A (VEGFA), cancer pathway, and MAPK, they had therapeutic effects on bronchial asthma. Conclusion Key components had strong binding activity with appropriate targets, according to molecular docking data. In vivo tests showed that ZKMG could reduce p-p38, p-ERKl/2, and p-I
10.Discussion of the methodology and implementation steps for assessing the causality of adverse event
Hong FANG ; Shuo-Peng JIA ; Hai-Xue WANG ; Xiao-Jing PEI ; Min LIU ; An-Qi YU ; Ling-Yun ZHOU ; Fang-Fang SHI ; Shu-Jie LU ; Shu-Hang WANG ; Yue YU ; Dan-Dan CUI ; Yu TANG ; Ning LI ; Ze-Huai WEN
The Chinese Journal of Clinical Pharmacology 2024;40(2):299-304
The assessment of adverse drug events is an important basis for clinical safety evaluation and post-marketing risk control of drugs,and its causality assessment is gaining increasing attention.The existing methods for assessing the causal relationship between drugs and the occurrence of adverse reactions can be broadly classified into three categories:global introspective methods,standardized methods,and probabilistic methods.At present,there is no systematic introduction of the operational details of the various methods in the domestic literature.This paper compares representative causality assessment methods in terms of definition and concept,methodological steps,industry evaluation and advantages and disadvantages,clarifies the basic process of determining the causality of adverse drug reactions,and discusses how to further improve the adverse drug reaction monitoring and evaluation system,with a view to providing a reference for drug development and pharmacovigilance work in China.

Result Analysis
Print
Save
E-mail