1.Effect of Dingzhi Xiaowan on PI3K/Akt/mTOR/HIF-1α Pathway in Post-stroke Cognitive Impairment Model Mice
Han ZHANG ; Yu WANG ; Xiaoqin ZHONG ; Zhenqiu NING ; Dafeng HU ; Minzhen DENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):1-11
ObjectiveTo investigate the effect of Dingzhi Xiaowan (DZXW) in post-stroke cognitive impairment (PSCI) model mice. MethodsThe cerebral ischemia-reperfusion injury model of mice was established by using the middle cerebral artery occlusion method. Forty C57BL/6 male mice were randomly divided into the sham operation group, model group, low-dose DZXW group (1.43 g·kg-1), and high-dose DZXW group (2.56 g·kg-1), with 10 mice in each group. Both the sham operation group and the model group were treated with equal amounts of normal saline by gavage, and the above four groups of mice were gavaged once a day for 30 consecutive days. Morris water maze test was used to evaluate the learning memory ability of mice. Serum levels of amyloid precursor protein (APP), amyloid 42 (Aβ42), acetylcholinesterase (AChE), and superoxide dismutase (SOD) were measured by enzyme-linked immunosorbent assay (ELISA). Deoxyribonucleotide end transferase-mediated nick end labelling (TUNEL) assay was applied to detect the degree of apoptosis in the mouse's hippocampal neurons. Western blot was used to detect the protein expression of phosphoinositol-3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), hypoxia-inducible factor 1-alpha (HIF-1α), B-cell lymphoma 2 (Bcl-2) homologous structural domain protein (Beclin1), sequestosome 1 (p62), microtubule-associated protein light chain 3 (LC3), Bcl-2, and Bcl-2-associated X protein (Bax) in hippocampal tissue. Prussian blue staining was used to detect iron deposition in hippocampal tissue. Transmission electron microscopy was taken to observe the ultrastructure of the mouse's hippocampal neurons. ResultsCompared with the sham operation group, the latency, APP, Aβ42, AChE, TUNEL positivity, ferric ion deposition, HIF-1α, Beclin1, Bax, and LC3Ⅱ/Ⅰ were significantly increased in the model group (P<0.01), while the number of crossing platforms, SOD, p-PI3K, p-Akt, p-mTOR, p62, and Bcl-2 were significantly decreased (P<0.01). Compared with the model group, the latency, APP, Aβ42, AChE, TUNEL positivity rate, ferric ion deposition, HIF-1α, Beclin1, Bax, and LC3Ⅱ/Ⅰ were significantly reduced in the DZXW groups (P<0.05), while the number of crossing platforms, SOD, p-PI3K, p-Akt, p-mTOR, p62, and Bcl-2 were significantly higher (P<0.05). ConclusionDZXW can alleviate cognitive impairment induced by oxidative stress-aggravated hippocampal neuronal damage in PSCI model mice by modulating the PI3K/Akt/mTOR/HIF-1α autophagy signalling pathway.
2.The Invariant Neural Representation of Neurons in Pigeon’s Ventrolateral Mesopallium to Stereoscopic Shadow Shapes
Xiao-Ke NIU ; Meng-Bo ZHANG ; Yan-Yan PENG ; Yong-Hao HAN ; Qing-Yu WANG ; Yi-Xin DENG ; Zhi-Hui LI
Progress in Biochemistry and Biophysics 2025;52(10):2614-2626
ObjectiveIn nature, objects cast shadows due to illumination, forming the basis for stereoscopic perception. Birds need to adapt to changes in lighting (meaning they can recognize stereoscopic shapes even when shadows look different) to accurately perceive different three-dimensional forms. However, how neurons in the key visual brain area in birds handle these lighting changes remains largely unreported. In this study, pigeons (Columba livia) were used as subjects to investigate how neurons in pigeon’s ventrolateral mesopallium (MVL) represent stereoscopic shapes consistently, regardless of changes in lighting. MethodsVisual cognitive training combined with neuronal recording was employed. Pigeons were first trained to discriminate different stereoscopic shapes (concave/convex). We then tested whether and how light luminance angle and surface appearance of the stereoscopic shapes affect their recognition accuracy, and further verify whether the results rely on specify luminance color. Simultaneously, neuronal firing activity of neurons was recorded with multiple electrode array implanted from the MVL during the presentation of difference shapes. The response was finally analyzed how selectively they responded to different stereoscopic shapes and whether their selectivity was affected by the changes of luminance condition (like lighting angle) or surface look. Support vector machine (SVM) models were trained on neuronal population responses recorded under one condition (light luminance angle of 45°) and used to decode responses under other conditions (light luminance angle of 135°, 225°, 315°) to verify the invariance of responses to different luminance conditions. ResultsBehavioral results from 6 pigeons consistently showed that the pigeons could reliably identify the core 3D shape (over 80% accuracy), and this ability wasn’t affected by changes in light angle or surface appearance. Statistical analysis of 88 recorded neurons from 6 pigeons revealed that 83% (73/88) showed strong selectivity for specific 3D shapes (selectivity index>0.3), and responses to convex shapes were consistently stronger than to concave shapes. These shape-selective responses remained stable across changes in light angle and surface appearance. Neural patterns were consistent under both blue and orange lighting. The decoding accuracy achieves above 70%, suggesting stable responses under different conditions (e.g., different lighting angles or surface appearance). ConclusionNeurons in the pigeon MVL maintain a consistent neural encoding pattern for different stereoscopic shapes, unaffected by illumination or surface appearance. This ensures stable object recognition by pigeons in changing visual environments. Our findings provide new physiological evidence for understanding how birds achieve stable perception (“invariant neural representations”) while coping with variations in the visual field.
3.Off-the-shelf human umbilical cord mesenchymal stromal cell product in acute-on-chronic liver failure: A multicenter phase I/II clinical trial.
Lina CUI ; Huaibin ZOU ; Shaoli YOU ; Changcun GUO ; Jundong GU ; Yulong SHANG ; Gui JIA ; Linhua ZHENG ; Juan DENG ; Xiufang WANG ; Ruiqing SUN ; Dawei DING ; Weijie WANG ; Xia ZHOU ; Guanya GUO ; Yansheng LIU ; Zhongchao HAN ; Zhibo HAN ; Yu CHEN ; Ying HAN
Chinese Medical Journal 2025;138(18):2347-2349
4.Mechanism related to bile acids metabolism of liver injury induced by long-term administration of emodin.
Jing-Zhuo TIAN ; Lian-Mei WANG ; Yan YI ; Zhong XIAN ; Nuo DENG ; Yong ZHAO ; Chun-Ying LI ; Yu-Shi ZHANG ; Su-Yan LIU ; Jia-Yin HAN ; Chen PAN ; Chen-Yue LIU ; Jing MENG ; Ai-Hua LIANG
China Journal of Chinese Materia Medica 2025;50(11):3079-3087
Emodin is a hydroxyanthraquinone compound that is widely distributed and has multiple pharmacological activities, including anti-diarrheal, anti-inflammatory, and liver-protective effects. Research indicates that emodin may be one of the main components responsible for inducing hepatotoxicity. However, studies on the mechanisms of liver injury are relatively limited, particularly those related to bile acids(BAs) metabolism. This study aims to systematically investigate the effects of different dosages of emodin on BAs metabolism, providing a basis for the safe clinical use of traditional Chinese medicine(TCM)containing emodin. First, this study evaluated the safety of repeated administration of different dosages of emodin over a 5-week period, with a particular focus on its impact on the liver. Next, the composition and content of BAs in serum and liver were analyzed. Subsequently, qRT-PCR was used to detect the mRNA expression of nuclear receptors and transporters related to BAs metabolism. The results showed that 1 g·kg~(-1) emodin induced hepatic damage, with bile duct hyperplasia as the primary pathological manifestation. It significantly increased the levels of various BAs in the serum and primary BAs(including taurine-conjugated and free BAs) in the liver. Additionally, it downregulated the mRNA expression of farnesoid X receptor(FXR), retinoid X receptor(RXR), and sodium taurocholate cotransporting polypeptide(NTCP), and upregulated the mRNA expression of cholesterol 7α-hydroxylase(CYP7A1) in the liver. Although 0.01 g·kg~(-1) and 0.03 g·kg~(-1) emodin did not induce obvious liver injury, they significantly increased the level of taurine-conjugated BAs in the liver, suggesting a potential interference with BAs homeostasis. In conclusion, 1 g·kg~(-1) emodin may promote the production of primary BAs in the liver by affecting the FXR-RXR-CYP7A1 pathway, inhibit NTCP expression, and reduce BA reabsorption in the liver, resulting in BA accumulation in the peripheral blood. This disruption of BA homeostasis leads to liver injury. Even doses of emodin close to the clinical dose can also have a certain effect on the homeostasis of BAs. Therefore, when using traditional Chinese medicine or formulas containing emodin in clinical practice, it is necessary to regularly monitor liver function indicators and closely monitor the risk of drug-induced liver injury.
Emodin/administration & dosage*
;
Bile Acids and Salts/metabolism*
;
Animals
;
Male
;
Liver/injuries*
;
Chemical and Drug Induced Liver Injury/genetics*
;
Drugs, Chinese Herbal/adverse effects*
;
Humans
;
Rats, Sprague-Dawley
;
Mice
;
Rats
5.Acupuncture at Weizhong (BL40) attenuates acetic acid-induced overactive bladder in rats by regulating brain neural activity through the modulation of mast cells and tibial nerves.
Xin LIU ; Chao-Yue ZHANG ; Xiu-Yu DU ; Shan-Shan LI ; Yu-Qing WANG ; Yi ZHENG ; Han-Zhi DENG ; Xiao-Qin FANG ; Jia-Ying LI ; Zu-Qing WANG ; Shi-Fen XU ; Yi-Qun MI
Journal of Integrative Medicine 2025;23(1):46-55
OBJECTIVE:
The present study evaluated the effects of deep acupuncture at Weizhong acupoint (BL40) on bladder function and brain activity in a rat model of overactive bladder (OAB), and investigated the possible mechanisms around the acupuncture area that initiate the effects of acupuncture.
METHODS:
Adult female Sprague-Dawley rats were randomly divided into six groups, comprising a control group, model group, group treated with deep acupuncture at BL40, group treated with shallow acupuncture at BL40, group treated with acupuncture at non-acupoint next to BL40, and group treated with acupuncture at Xuanzhong (GB39). Urodynamic evaluation was used to observe the urination, and functional magnetic resonance imaging was used to observe the brain activation. The mechanism of acupuncture at BL40 in regulating bladder function was explored by toluidine blue staining and enzyme-linked immunosorbent assay, and the mechanism was verified by stabilizing mast cells (MCs) or blocking tibial nerve.
RESULTS:
Deep acupuncture at BL40 significantly increased the intercontraction interval in OAB rats and enhanced the mean amplitude of low frequency fluctuation of primary motor cortex (M1), periaquaductal gray matter (PAG), and pontine micturition center (PMC). It also increased the zero-lag functional connectivity between M1 and PAG and between PAG and PMC. Shallow acupuncture at BL40 and acupuncture at non-acupoint or GB39 had no effect on these indexes. Further studies suggested that deep acupuncture at BL40 increased the number and degranulation rate of MCs as well as the contents of 5-hydroxytryptamine, substance P, and histamine in the tissues around BL40. Blocking the tibial nerve by lidocaine injection or inhibiting MC degranulation by sodium cromoglycate injection obstructed the effects of acupuncture on restoring urinary function and modulating brain activation in OAB rats.
CONCLUSION
Deep acupuncture at BL40 may be more effective for inhibiting OAB by promoting degranulation of MCs around the acupoint and stimulating tibial nerve, thereby regulating the activation of the brain area that controls the lower urinary tract. Please cite this article as: Liu X, Zhang CY, Du XY, Li SS, Wang YQ, Zheng Y, Deng HZ, Fang XQ, Li JY, Wang ZQ, Xu SF, Mi YQ. Acupuncture at Weizhong (BL40) attenuates acetic acid-induced overactive bladder in rats by regulating brain neural activity through the modulation of mast cells and tibial nerves. J Integr Med. 2025; 23(1): 46-55.
Animals
;
Urinary Bladder, Overactive/physiopathology*
;
Mast Cells/physiology*
;
Rats, Sprague-Dawley
;
Female
;
Acupuncture Therapy
;
Acupuncture Points
;
Rats
;
Brain/physiopathology*
;
Tibial Nerve/physiopathology*
;
Acetic Acid
;
Urinary Bladder/physiopathology*
6.The novel combination of astragaloside IV and formononetin protects from doxorubicin-induced cardiomyopathy by enhancing fatty acid metabolism.
Xinyue YU ; Zhaodi HAN ; Linling GUO ; Shaoqian DENG ; Jing WU ; Qingqing PAN ; Liuyi ZHONG ; Jie ZHAO ; Hui HUI ; Fengguo XU ; Zunjian ZHANG ; Yin HUANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1171-1182
Astragali Radix (AR), a traditional Chinese medicine (TCM), has demonstrated therapeutic efficacy against various diseases, including cardiovascular conditions, over centuries of use. While doxorubicin serves as an effective chemotherapeutic agent against multiple cancers, its clinical application remains constrained by significant cardiotoxicity. Research has indicated that AR exhibits protective properties against doxorubicin-induced cardiomyopathy (DIC); however, the specific bioactive components and underlying mechanisms responsible for this therapeutic effect remain incompletely understood. This investigation seeks to identify the protective bioactive components in AR against DIC and elucidate their mechanisms of action. Through network medicine analysis, astragaloside IV (AsIV) and formononetin (FMT) were identified as potential cardioprotective agents from 129 AR components. In vitro experiments using H9c2 rat cardiomyocytes revealed that the AsIV-FMT combination (AFC) effectively reduced doxorubicin-induced cell death in a dose-dependent manner, with optimal efficacy at a 1∶2 ratio. In vivo, AFC enhanced survival rates and improved cardiac function in both acute and chronic DIC mouse models. Additionally, AFC demonstrated cardiac protection while maintaining doxorubicin's anti-cancer efficacy in a breast cancer mouse model. Lipidomic and metabolomics analyses revealed that AFC normalized doxorubicin-induced lipid profile alterations, particularly by reducing fatty acid accumulation. Gene knockdown studies and inhibitor experiments in H9c2 cells demonstrated that AsIV and FMT upregulated peroxisome proliferator activated receptor γ coactivator 1α (PGC-1α) and PPARα, respectively, two key proteins involved in fatty acid metabolism. This research establishes AFC as a promising therapeutic approach for DIC, highlighting the significance of multi-target therapies derived from natural herbals in contemporary medicine.
Animals
;
Doxorubicin/adverse effects*
;
Saponins/administration & dosage*
;
Isoflavones/pharmacology*
;
Rats
;
Cardiomyopathies/prevention & control*
;
Mice
;
Fatty Acids/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Triterpenes/administration & dosage*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Humans
;
Cardiotonic Agents/administration & dosage*
;
Mice, Inbred C57BL
;
Cell Line
;
Astragalus Plant/chemistry*
;
Astragalus propinquus
7.The Effect of SIRT5 Deletion on Recovery of Hematopoietic Stem Cells after Injury in Mouse
Yuan-Yao DENG ; Han-Chuan MOU ; Xian ZHANG ; Fan REN ; Zhi-Yang CHEN ; Zhen-Yu JU ; Hui-Ling LOU
Journal of Experimental Hematology 2024;32(2):568-576
Objective:To investigate the effect of deacylase Sirtuin 5 in the recovery of hematopoietic stem cells(HSCs)after treated by 5-FU in mouse.Methods:Flow cytometry was used to analyze the effect of SIRT5 deletion on the proportion of hematopoietic stem/progenitor cells(HSPCs)in bone marrow(BM),the proportion of T cells,B cells and myeloid cells(TBM)in peripheral blood(PB)and spleen,and the development of T cells in thymus.Mouse were treated with 5-FU to study the effect of SIRT5 deletion on the cell cycle,apoptosis and the proportion of HSPCs in BM.The effect of SIRT5 deletion on the proliferation of HSCs was analyzed by flow sorting in vitro.Results:SIRT5 deletion did not affect the development of T cells in thymus and the proportion of TBM cells in PB and spleen compared with wild type mice.SIRT5 deletion increased proportion of HSPCs in BM.After 5-FU treatment,the proportion of HSCs in SIRT5 deletion mice was significant decreased(P<0.05),the HSPC in SIRT5 deletion mice was activated from G0 to G1 phase(P<0.05),and the proportion of early apoptosis increased(P<0.05).By monoclonal culture in vitro,the ability of HSCs to form clones in SIRT5 deletion mice was decreased significantly(P<0.05).Conclusion:SIRT5 deletion lead to a decreased the ability of HSCs to clone in vitro.SIRT5 deletion is not conducive to the recovery of HSPCs injury in mice under hematopoietic stress.
8.Effects of Zuogui Jiangtang Tongmai Recipe on necroptosis pathway in a rat model of type 2 diabetes mellitus complicated with cerebral infarction
Yu-Zhe CAI ; Ding-Xiang LI ; Yi-Xuan LIU ; Zheng LUO ; Jing-Jing YANG ; Han-Lin LEI ; Ya-Nan ZHANG ; Qin WU ; Jing CHEN ; Yi-Hui DENG
Chinese Traditional Patent Medicine 2024;46(9):2936-2942
AIM To investigate the effects of Zuogui Jiangtang Tongmai Recipe on necroptosis pathway in a rat model of type 2 diabetes mellitus(T2DM)complicated with cerebral infarction(CI).METHODS The SD rats were randomly divided into the sham operation group,the model group,the metformin group(0.045 g/kg),and the low,medium and high dose Zuogui Jiangtang Tongmai Recipe groups(6.5,13,26 g/kg),with 9 rats in each group.In contrast to rats of the sham operation group,rats of the other groups were given 4 weeks feeding of high-sugar and high-fat diet combined with intraperitoneal injection of streptozotocin to establish a T2DM rat model with one week stable blood glucose,followed by gavage of corresponding drugs 3 days before the establishment of the middle cerebral artery occlusion(MCAO)model.After 7 days of administration,the rats had their CI injury assessed by mNSS method and TTC staining;their level of blood glucose detected by blood glucose meter;their levels of glycated serum protein,serum TNF-α and IL-1β detected by ELISA;their cerebral mRNA expressions of FADD,RIPK1,RIPK3 and MLKL detected by RT-qPCR;and their cerebral protein expressions of FADD,p-RIPK1,p-RIPK3 and p-MLKL detected by Western blot.RESULTS Compared with the sham operation group,the model group displayed increased levels of blood glucose value,glycosylated serum protein,neurological function score,cerebral infarction volume,cerebral FADD,RIPK1,RIPK3 and MLKL mRNA expressions,cerebral FADD,p-RIPK1,p-RIPK3 and p-MLKL protein expressions,serum TNF-α and IL-1β levels(P<0.01);and more disordered and morphologically diverse neurons with smaller nucleus.Compared with the model group,the groups intervened with medium or high dose Zuogui Jiangtang Tongmai Recipe,or metformin shared improvement in terms of the aforementioned indices(P<0.05,P<0.01);and more neurons with regular morphology neat arrangement,and reduced cell gap.CONCLUSION Zuogui Jiangtang Tongmai Recipe can improve the neurological dysfunction of the rat model of T2DM complicated with CI,which may associate with the inhibited activation of necroptosis signaling pathway.
9.Myricetin attenuates renal fibrosis by activating Nrf2/HO-1 pathway to inhibit oxidative stress
Dong-xue LI ; Zhou HUANG ; Han-yu WANG ; Zhi-hao ZHANG ; Ning-hua TAN ; Xue-yang DENG
Acta Pharmaceutica Sinica 2024;59(2):359-367
This paper investigates the effect of myricetin (MYR) on renal fibrosis induced by unilateral ureteral obstruction (UUO) and common bile duct ligation (CBDL) in mice and its mechanism. The animal experiment has been approved by the Ethics Committee of China Pharmaceutical University (NO: 2022-10-020). Thirty-five ICR mice were divided into control, UUO, UUO+MYR, CBDL and CBDL+MYR groups. H&E and Masson staining were used to detect pathological changes in kidney tissues. Western blot (WB) was used to detect the expression of fibrosis-related proteins in renal tissue, and total superoxide dismutase (SOD) activity detection kit (WST-8) was used to detect the changes of total SOD in renal tissue of CBDL mice.
10.Separation and determination of chiral and achiral impurities in glimepiride tablets by supercritical fluid chromatography
Han CHEN ; Li-ju YU ; Yan-hua FENG ; Si-li LIU ; Li-li HUANG ; Jian-ping ZHU ; Ming DENG
Acta Pharmaceutica Sinica 2024;59(8):2337-2342
Separation and determination of chiral and achiral impurities in glimepiride tablets by supercritical fluid chromatography. Chiral and achiral impurities were separated on a ACQUITY UPC2 TrefoilTM CEL1 column (150 mm × 3.0 mm, 2.5 μm) maintained at 30 ℃ with the mobile phase containing a mixture of CO2 and methanol-isopropanol (1∶1) at 1 mL·min-1, and the detection wavelength was set at 228 nm. The back pressure was set at 13.8 MPa. The injection volume was 5 μL. In the chromatogram of the system suitability solution, the peaks elute in the following order: impurity Ⅳ, impurity Ⅴ, glimepiride, impurity Ⅲ, impurity Ⅰ and impurity Ⅱ. The six substances were separated successfully in 6 min using the proposed method with a resolution factor of 2.9, 1.6, 3.0, 2.0, 6.4. The impurity Ⅰ-Ⅴ detection limit (S/N = 3) was 0.17, 0.10, 0.06, 0.15, 0.10 μg·mL-1, respectively. Good linear relationship was established between the peak response and the concentration in the range of 0.48-51.30 μg·mL-1 for all impurities. The spiked recovery of impurity Ⅰ-Ⅴ was found to be acceptable for 99.9%, 98.9%, 102.1%, 100.1%, 96.3% (

Result Analysis
Print
Save
E-mail