1.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
4.Application of 3D-printed auxiliary guides in adolescent scoliosis surgery.
Dong HOU ; Jian-Tao WEN ; Chen ZHANG ; Jin HUANG ; Chang-Quan DAI ; Kai LI ; Han LENG ; Jing ZHANG ; Shao-Bo YANG ; Xiao-Juan CUI ; Juan WANG ; Xiao-Yun YUAN
China Journal of Orthopaedics and Traumatology 2025;38(11):1119-1125
OBJECTIVE:
To investigate the accuracy and safety of pedicle screw placement using 3D-printed auxiliary guides in scoliosis correction surgery for adolescents.
METHODS:
A retrospective analysis was conducted on the clinical data of 51 patients who underwent posterior scoliosis correction surgery from January 2020 to March 2023. Among them, there were 35 cases of adolescent idiopathic scoliosis and 16 cases of congenital scoliosis. The patients were divided into two groups based on the auxiliary tool used:the 3D-printed auxiliary guide screw placement group (3D printing group) and the free-hand screw placement group (free-hand group, without auxiliary tools). The 3D printing group included 32 patients (12 males and 20 females) with an average age of (12.59±2.60) years;the free-hand group included 19 patients (7 males and 12 females) with an average age of (14.58±3.53) years. The two groups were compared in terms of screw placement accuracy and safety, spinal correction rate, intraoperative blood loss, number of intraoperative fluoroscopies, operation time, hospital stay, and preoperative and last follow-up scores of the Scoliosis Research Society-22 (SRS-22) questionnaire.
RESULTS:
A total of 707 pedicle screws were placed in the two groups, with 441 screws in the 3D printing group and 266 screws in the free-hand group. All patients in both groups successfully completed the surgery. There was a statistically significant difference in operation time between the two groups (P<0.05). The screw placement accuracy rate of the 3D printing group was 95.46% (421/441), among which the Grade A placement rate was 89.34% (394/441);the screw placement accuracy rate of the free-hand group was 86.47% (230/266), with a Grade A placement rate of 73.31% (195/266). There were statistically significant differences in the accuracy of Grade A, B, and C screw placements between the two groups (P<0.05), while no statistically significant differences were observed in intraoperative blood loss, number of fluoroscopies, correction rate, or hospital stay (P>0.05). In the SRS-22 questionnaire scores, the scores of functional status and activity ability, self-image, mental status, and pain of patients in each group at the last follow-up were significantly improved compared with those before surgery (P<0.05), but there were no statistically significant differences in all scores between the two groups (P>0.05).
CONCLUSION
In scoliosis correction surgery, compared with traditional free-hand screw placement, the use of 3D-printed auxiliary guides for screw placement significantly improves the accuracy and safety of screw placement and shortens the operation time.
Humans
;
Male
;
Scoliosis/surgery*
;
Female
;
Adolescent
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Pedicle Screws
;
Child
5.Feasibility of MAGIC pure tone screening in children aged 3 to 6 years.
Qingjia CUI ; Fang GE ; Renjie HAN ; Jin YAN ; Cheng WEN ; Yue LI ; Xin DAI ; Lihui HUANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(1):14-18
Objective:To explore the feasibility of the multiple-choice auditory graphical interactive check(MAGIC) screening module in childhood hearing screening in children aged 3 to 6 years. Methods:A hearing screening was conducted on 366 children(732 ears) aged between 3 and 6 years. The screening methods included MAGIC, DPOAE, and acoustic immittance.The cooperation, screening time, pass rate, and correlation of the three screening methods were compared. Results:There was a statistically significant difference in the degree of cooperation among the three screeningmethods(P=0.004).The MAGIC pure tone screening method was 98.6%, the screening DPOAE was 99.5%,and the acoustic immittance screening was 100%. For the screening duration, the MAGIC pure tone screening method was(116.3±59.1)s, the screening DPOAE was(27.2±19.7)s, and the acoustic impedance screening was(24.6±14.6)s. There was a significant statistical significance differences among the three or two groups(P<0.01). The passing rates of MAGIC pure tone screening,screening DPOAE and acoustic immittance screening were 64.7%, 65.4%, and 69.3%, respectively, and there was no significant statistical difference among the three or two groups(P>0.05). There was no significant difference between MAGIC pure tone screening method and screening DPOAE(P=0.827>0.05), and acoustic impedance(P=0.653>0.05), while the difference between screening DPOAE and acoustic impedance was statistically significant(P<0.01). Conclusion:MAGIC pure sound screening method has good feasibility, can comprehensively reflect the hearing level of screened children, and can be promoted for hearing screening in children aged between 3 and 6 years.
Humans
;
Child, Preschool
;
Child
;
Female
;
Male
;
Audiometry, Pure-Tone
;
Mass Screening/methods*
;
Feasibility Studies
;
Acoustic Impedance Tests/methods*
;
Hearing Loss/diagnosis*
;
Hearing Tests/methods*
6.Epidemiological characteristics of human respiratory syncytial virus among acute respiratory infection cases in 16 provinces of China from 2009 to 2023
Aili CUI ; Baicheng XIA ; Zhen ZHU ; Zhibo XIE ; Liwei SUN ; Jin XU ; Jing XU ; Zhong LI ; Linqing ZHAO ; Xiaoru LONG ; Deshan YU ; Bing ZHU ; Feng ZHANG ; Min MU ; Hui XIE ; Liang CAI ; Yun ZHU ; Xiaoling TIAN ; Bing WANG ; Zhenguo GAO ; Xiaoqing LIU ; Binzhi REN ; Guangyue HAN ; Kongxin HU ; Yan ZHANG
Chinese Journal of Preventive Medicine 2024;58(7):945-951
Objective:To understand the epidemiological characteristics of human respiratory syncytial virus (HRSV) among acute respiratory infection (ARI) cases in 16 provinces of China from 2009 to 2023.Methods:The data of this study were collected from the ARI surveillance data from 16 provinces in China from 2009 to 2023, with a total of 28 278 ARI cases included in the study. The clinical specimens from ARI cases were screened for HRSV nucleic acid from 2009 to 2023, and differences in virus detection rates among cases of different age groups, regions, and months were analyzed.Results:A total of 28 278 ARI cases were enrolled from January 2009 to September 2023. The age of the cases ranged from<1 month to 112 years, and the age M ( Q1, Q3) was 3 years (1 year, 9 years). Among them, 3 062 cases were positive for HRSV nucleic acid, with a total detection rate of 10.83%. From 2009 to 2019, the detection rate of HRSV was 9.33%, and the virus was mainly prevalent in winter and spring. During the Corona Virus Disease 2019 (COVID-19) pandemic, the detection rate of HRSV fluctuated between 6.32% and 18.67%. There was no traditional winter epidemic peak of HRSV from the end of 2022 to the beginning of 2023, and an anti-seasonal epidemic of HRSV occurred from April to May 2023. About 87.95% (2 693/3 062) of positive cases were children under 5 years old, and the difference in the detection rate of HRSV among different age groups was statistically significant ( P<0.001), showing a decreasing trend of HRSV detection rate with the increase of age ( P<0.001). Among them, the HRSV detection rate (25.69%) was highest in children under 6 months. Compared with 2009-2019, the ranking of HRSV detection rates in different age groups changed from high to low between 2020 and 2023, with the age M (Q1, Q3) of HRSV positive cases increasing from 1 year (6 months, 3 years) to 2 years (11 months, 3 years). Conclusion:Through 15 years of continuous HRSV surveillance analysis, children under 5 years old, especially infants under 6 months old, are the main high-risk population for HRSV infection. During the COVID-19 pandemic, the prevalence and patterns of HRSV in China have changed.
7.Epidemiological characteristics of human respiratory syncytial virus among acute respiratory infection cases in 16 provinces of China from 2009 to 2023
Aili CUI ; Baicheng XIA ; Zhen ZHU ; Zhibo XIE ; Liwei SUN ; Jin XU ; Jing XU ; Zhong LI ; Linqing ZHAO ; Xiaoru LONG ; Deshan YU ; Bing ZHU ; Feng ZHANG ; Min MU ; Hui XIE ; Liang CAI ; Yun ZHU ; Xiaoling TIAN ; Bing WANG ; Zhenguo GAO ; Xiaoqing LIU ; Binzhi REN ; Guangyue HAN ; Kongxin HU ; Yan ZHANG
Chinese Journal of Preventive Medicine 2024;58(7):945-951
Objective:To understand the epidemiological characteristics of human respiratory syncytial virus (HRSV) among acute respiratory infection (ARI) cases in 16 provinces of China from 2009 to 2023.Methods:The data of this study were collected from the ARI surveillance data from 16 provinces in China from 2009 to 2023, with a total of 28 278 ARI cases included in the study. The clinical specimens from ARI cases were screened for HRSV nucleic acid from 2009 to 2023, and differences in virus detection rates among cases of different age groups, regions, and months were analyzed.Results:A total of 28 278 ARI cases were enrolled from January 2009 to September 2023. The age of the cases ranged from<1 month to 112 years, and the age M ( Q1, Q3) was 3 years (1 year, 9 years). Among them, 3 062 cases were positive for HRSV nucleic acid, with a total detection rate of 10.83%. From 2009 to 2019, the detection rate of HRSV was 9.33%, and the virus was mainly prevalent in winter and spring. During the Corona Virus Disease 2019 (COVID-19) pandemic, the detection rate of HRSV fluctuated between 6.32% and 18.67%. There was no traditional winter epidemic peak of HRSV from the end of 2022 to the beginning of 2023, and an anti-seasonal epidemic of HRSV occurred from April to May 2023. About 87.95% (2 693/3 062) of positive cases were children under 5 years old, and the difference in the detection rate of HRSV among different age groups was statistically significant ( P<0.001), showing a decreasing trend of HRSV detection rate with the increase of age ( P<0.001). Among them, the HRSV detection rate (25.69%) was highest in children under 6 months. Compared with 2009-2019, the ranking of HRSV detection rates in different age groups changed from high to low between 2020 and 2023, with the age M (Q1, Q3) of HRSV positive cases increasing from 1 year (6 months, 3 years) to 2 years (11 months, 3 years). Conclusion:Through 15 years of continuous HRSV surveillance analysis, children under 5 years old, especially infants under 6 months old, are the main high-risk population for HRSV infection. During the COVID-19 pandemic, the prevalence and patterns of HRSV in China have changed.
8.Trend Analysis on Incidence and Age at Diagnosis for Bladder Cancer in Cancer Registration Areas of Jiangsu Province from 2009 to 2019
Junpeng CUI ; Yan LU ; Linchi WANG ; Lingling JIN ; Jinyi ZHOU ; Ran TAO ; Weigang MIAO ; Renqiang HAN
China Cancer 2024;33(12):983-990
[Purpose]To analyze the trend of bladder cancer incidence and age at diagnosis in can-cer registration areas of Jiangsu Province from 2009 to 2019.[Methods]The data of bladder can-cer incidence from 2009 to 2019 were collected from 16 cancer registries in Jiangsu Province,and quality control indicators of the data were evaluated.The crude rate(CR)of incidence,age-standar-dized incidence rate by Segi world standard population(ASIRW),age-specific incidence rate,mean age at diagnosis,mean standardized age at diagnosis,and age-specific incidence composi-tion ratio were calculated.Incidence trends were analyzed using Joinpoint software and the average annual percentage change(AAPC)was calculated.Birth cohort models were constructed and can-cer incidence rates were calculated for people born from 1929 to 2019 and the incidence trends were analyzed.The linear regression models were used to analyze the relationship of average age at onset,standardized average age of onset with year of onset.[Results]The CR of bladder cancer in Jiangsu Province increased from 4.27/105 in 2009 to 7.04/105 in 2019.The CR and ASIRW showed upward trends(CR:AAPC=4.62%,ASIRW:AAPC=1.92%,both P<0.001).Sex-specific analysis showed that the incidence rate was higher in male(AAPC=5.32%)than that in female(AAPC=1.98%).Birth cohort results indicated a significant upward trend in incidence rates among age groups of 60 years old above,and the fastest increase was in those aged 80 years old and above(AAPC=3.27%,P=0.007).From 2009 to 2019,the average age of bladder cancer onset in Jiangsu Province showed a significant rising trend,increasing by an average of 0.17 years old annually,but the standardized average age of onset showed no significant change after adjusting for age structure.[Conclusion]The incidence rate of bladder cancer showed an increasing trend from 2009 to 2019 in Jiangsu Province,with a significantly higher incidence rate in male than that in female.
9.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
10.Whole Exome Sequencing Reveals Gene Mutation Characteristics of Primary Central Nervous System Lymphoma
Qi-Qi JIN ; Hao-Yun JIANG ; Ye HAN ; Cui-Cui LI ; Li-Tian ZHANG ; Chong-Yang WU
Journal of Experimental Hematology 2024;32(3):756-762
Objective:To investigate gene mutation characteristics of primary central nervous system lymphoma(PCNSL)through whole exome sequencing(WES)to 18 patients with PCNSL.Methods:Tumor tissues from 18 patients with diffuse large B-cell lymphoma who were diagnosed with PCNSL in Department of Hematology,Lanzhou University Second Hospital from September 2018 to December 2020 and had normal immune function,no history of HIV or immunosuppressant therapy were collected.High-throughput-based WES was performed on the tumor tissues,with an average sequencing depth of>100 x.After data processing and bioinformatics analysis of sequencing results,the mutation maps and mutation characteristics of 18 PCNSL patients were obtained.Results:Obvious somatic mutations were detected in all 18 patients.The median number of somatic mutations was 321.Missense mutations were most prominent(accounting for about 90%),and the mutation type was dominated by C>T(50.2%),reflecting the age-related mutation pattern.Among the top 15 frequently mutated genes,PSD3,DUSP5,MAGEB16,TELO2,FMO2,TRMT13,AOC1,PIGZ,SVEP1,IP6K3,and TIAM1 were the driver genes.The enrichment results of driver gene pathways showed that RTK-RAS,Wnt,NOTCH,Hippo and Cell-Cycle pathways were significantly enriched.The tumor mutation burden was between 3.558 48/Mb and 8.780 89/Mb,and the average was 4.953 32/Mb,which was significantly higher than other cancer research cohorts in the TCGA database.Conclusions:PCNSL occurs somatic missense mutations frequently,mainly point mutations,and the mutation type is mainly C>T.The driver genes are mainly involved in RTK-RAS,Wnt,NOTCH and Hippo pathways,indicating that the above pathways may be related to the pathogenesis of PCNSL.PCNSL has a significantly high tumor mutation burden,which may explain the efficacy of PD-1 inhibitors in PCNSL.

Result Analysis
Print
Save
E-mail