1.The Effects of Nicotine on Re-endothelialization, Inflammation, and Neoatherosclerosis After Drug-Eluting Stent Implantation in a Porcine Model
Seok OH ; Ju Han KIM ; Saleem AHMAD ; Yu Jeong JIN ; Mi Hyang NA ; Munki KIM ; Jeong Ha KIM ; Dae Sung PARK ; Dae Young HYUN ; Kyung Hoon CHO ; Min Chul KIM ; Doo Sun SIM ; Young Joon HONG ; Seung-won LEE ; Youngkeun AHN ; Myung Ho JEONG
Korean Circulation Journal 2025;55(1):50-64
Background and Objectives:
Cigarette smoking is a major risk factor for atherosclerosis.Nicotine, a crucial constituent of tobacco, contributes to atherosclerosis development and progression. However, evidence of the association between nicotine and neointima formation is limited. We aimed to evaluate whether nicotine enhances neointimal hyperplasia in the native epicardial coronary arteries of pigs after percutaneous coronary intervention (PCI) with drug-eluting stents (DES).
Methods:
After coronary angiography (CAG) and quantitative coronary angiography (QCA), we implanted 20 DES into 20 pigs allocated to 2 groups: no-nicotine (n=10) and nicotine (n=10) groups. Post-PCI CAG and QCA were performed immediately. Follow-up CAG, QCA, optical coherence tomography (OCT), and histopathological analyses were performed 2 months post-PCI.
Results:
Despite intergroup similarities in the baseline QCA findings, OCT analysis showed that the nicotine group had a smaller mean stent and lumen areas, a larger mean neointimal area, greater percent area stenosis, and higher peri-strut fibrin and inflammation scores than the no-nicotine group. In immunofluorescence analysis, the nicotine group displayed higher expression of CD68 and α-smooth muscle actin but lower CD31 expression than the no-nicotine group.
Conclusions
Nicotine inhibited re-endothelialization and promoted inflammation and NIH after PCI with DES in a porcine model.
2.The Effects of Nicotine on Re-endothelialization, Inflammation, and Neoatherosclerosis After Drug-Eluting Stent Implantation in a Porcine Model
Seok OH ; Ju Han KIM ; Saleem AHMAD ; Yu Jeong JIN ; Mi Hyang NA ; Munki KIM ; Jeong Ha KIM ; Dae Sung PARK ; Dae Young HYUN ; Kyung Hoon CHO ; Min Chul KIM ; Doo Sun SIM ; Young Joon HONG ; Seung-won LEE ; Youngkeun AHN ; Myung Ho JEONG
Korean Circulation Journal 2025;55(1):50-64
Background and Objectives:
Cigarette smoking is a major risk factor for atherosclerosis.Nicotine, a crucial constituent of tobacco, contributes to atherosclerosis development and progression. However, evidence of the association between nicotine and neointima formation is limited. We aimed to evaluate whether nicotine enhances neointimal hyperplasia in the native epicardial coronary arteries of pigs after percutaneous coronary intervention (PCI) with drug-eluting stents (DES).
Methods:
After coronary angiography (CAG) and quantitative coronary angiography (QCA), we implanted 20 DES into 20 pigs allocated to 2 groups: no-nicotine (n=10) and nicotine (n=10) groups. Post-PCI CAG and QCA were performed immediately. Follow-up CAG, QCA, optical coherence tomography (OCT), and histopathological analyses were performed 2 months post-PCI.
Results:
Despite intergroup similarities in the baseline QCA findings, OCT analysis showed that the nicotine group had a smaller mean stent and lumen areas, a larger mean neointimal area, greater percent area stenosis, and higher peri-strut fibrin and inflammation scores than the no-nicotine group. In immunofluorescence analysis, the nicotine group displayed higher expression of CD68 and α-smooth muscle actin but lower CD31 expression than the no-nicotine group.
Conclusions
Nicotine inhibited re-endothelialization and promoted inflammation and NIH after PCI with DES in a porcine model.
3.Effects of Anti-Obesity Strategies on Bone Mineral Density: A Comprehensive Meta-Analysis of Randomized Controlled Trials
Myung Jin KIM ; Seonok KIM ; Han Na JUNG ; Chang Hee JUNG ; Woo Je LEE ; Yun Kyung CHO
Journal of Obesity & Metabolic Syndrome 2025;34(1):41-53
Background:
Although an appropriate weight management strategy is essential for obese individuals, weight loss can have adverse effects on bone mineral density (BMD). We conducted a systematic review of randomized controlled trials to evaluate changes in BMD after the implementation of various weight loss strategies.
Methods:
The PubMed, Embase, Web of Science, and Cochrane Library databases were searched to find articles published from database inception until June 2023. Randomized controlled trials of various treatments for obese patients that reported changes in BMD were selected. The primary outcome was BMD of the whole body, lumbar spine, and total hip, measured using dual X-ray absorptiometry.
Results:
Eighteen randomized controlled trials involving 2,510 participants with obesity were included in the analysis. At follow-up examination, the BMD of the lumbar spine decreased significantly after metabolic surgery (mean difference [MD]= –0.40 g/cm2 ; 95% confidence interval [CI], –0.73 to –0.07; I2 = 0%); lifestyle and pharmacological interventions did not result in a significant decrease in BMD at any location. Metabolic surgery also produced the most substantial difference in weight, with an MD of –3.14 (95% CI, –3.82 to –2.47).
Conclusion
This meta-analysis is the first to examine the effects of all categories of anti-obesity strategies, including the use of anti-obesity medications, on BMD. Bariatric metabolic surgery can have adverse effects on BMD. Moreover, medications can be used as a treatment for weight loss without compromising bone quality.
4.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
5.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
6.Effects of Anti-Obesity Strategies on Bone Mineral Density: A Comprehensive Meta-Analysis of Randomized Controlled Trials
Myung Jin KIM ; Seonok KIM ; Han Na JUNG ; Chang Hee JUNG ; Woo Je LEE ; Yun Kyung CHO
Journal of Obesity & Metabolic Syndrome 2025;34(1):41-53
Background:
Although an appropriate weight management strategy is essential for obese individuals, weight loss can have adverse effects on bone mineral density (BMD). We conducted a systematic review of randomized controlled trials to evaluate changes in BMD after the implementation of various weight loss strategies.
Methods:
The PubMed, Embase, Web of Science, and Cochrane Library databases were searched to find articles published from database inception until June 2023. Randomized controlled trials of various treatments for obese patients that reported changes in BMD were selected. The primary outcome was BMD of the whole body, lumbar spine, and total hip, measured using dual X-ray absorptiometry.
Results:
Eighteen randomized controlled trials involving 2,510 participants with obesity were included in the analysis. At follow-up examination, the BMD of the lumbar spine decreased significantly after metabolic surgery (mean difference [MD]= –0.40 g/cm2 ; 95% confidence interval [CI], –0.73 to –0.07; I2 = 0%); lifestyle and pharmacological interventions did not result in a significant decrease in BMD at any location. Metabolic surgery also produced the most substantial difference in weight, with an MD of –3.14 (95% CI, –3.82 to –2.47).
Conclusion
This meta-analysis is the first to examine the effects of all categories of anti-obesity strategies, including the use of anti-obesity medications, on BMD. Bariatric metabolic surgery can have adverse effects on BMD. Moreover, medications can be used as a treatment for weight loss without compromising bone quality.
7.The Effects of Nicotine on Re-endothelialization, Inflammation, and Neoatherosclerosis After Drug-Eluting Stent Implantation in a Porcine Model
Seok OH ; Ju Han KIM ; Saleem AHMAD ; Yu Jeong JIN ; Mi Hyang NA ; Munki KIM ; Jeong Ha KIM ; Dae Sung PARK ; Dae Young HYUN ; Kyung Hoon CHO ; Min Chul KIM ; Doo Sun SIM ; Young Joon HONG ; Seung-won LEE ; Youngkeun AHN ; Myung Ho JEONG
Korean Circulation Journal 2025;55(1):50-64
Background and Objectives:
Cigarette smoking is a major risk factor for atherosclerosis.Nicotine, a crucial constituent of tobacco, contributes to atherosclerosis development and progression. However, evidence of the association between nicotine and neointima formation is limited. We aimed to evaluate whether nicotine enhances neointimal hyperplasia in the native epicardial coronary arteries of pigs after percutaneous coronary intervention (PCI) with drug-eluting stents (DES).
Methods:
After coronary angiography (CAG) and quantitative coronary angiography (QCA), we implanted 20 DES into 20 pigs allocated to 2 groups: no-nicotine (n=10) and nicotine (n=10) groups. Post-PCI CAG and QCA were performed immediately. Follow-up CAG, QCA, optical coherence tomography (OCT), and histopathological analyses were performed 2 months post-PCI.
Results:
Despite intergroup similarities in the baseline QCA findings, OCT analysis showed that the nicotine group had a smaller mean stent and lumen areas, a larger mean neointimal area, greater percent area stenosis, and higher peri-strut fibrin and inflammation scores than the no-nicotine group. In immunofluorescence analysis, the nicotine group displayed higher expression of CD68 and α-smooth muscle actin but lower CD31 expression than the no-nicotine group.
Conclusions
Nicotine inhibited re-endothelialization and promoted inflammation and NIH after PCI with DES in a porcine model.
8.Korean Practice Guidelines for Gastric Cancer 2024: An Evidence-based, Multidisciplinary Approach (Update of 2022 Guideline)
In-Ho KIM ; Seung Joo KANG ; Wonyoung CHOI ; An Na SEO ; Bang Wool EOM ; Beodeul KANG ; Bum Jun KIM ; Byung-Hoon MIN ; Chung Hyun TAE ; Chang In CHOI ; Choong-kun LEE ; Ho Jung AN ; Hwa Kyung BYUN ; Hyeon-Su IM ; Hyung-Don KIM ; Jang Ho CHO ; Kyoungjune PAK ; Jae-Joon KIM ; Jae Seok BAE ; Jeong Il YU ; Jeong Won LEE ; Jungyoon CHOI ; Jwa Hoon KIM ; Miyoung CHOI ; Mi Ran JUNG ; Nieun SEO ; Sang Soo EOM ; Soomin AHN ; Soo Jin KIM ; Sung Hak LEE ; Sung Hee LIM ; Tae-Han KIM ; Hye Sook HAN ; On behalf of The Development Working Group for the Korean Practice Guideline for Gastric Cancer 2024
Journal of Gastric Cancer 2025;25(1):5-114
Gastric cancer is one of the most common cancers in both Korea and worldwide. Since 2004, the Korean Practice Guidelines for Gastric Cancer have been regularly updated, with the 4th edition published in 2022. The 4th edition was the result of a collaborative work by an interdisciplinary team, including experts in gastric surgery, gastroenterology, endoscopy, medical oncology, abdominal radiology, pathology, nuclear medicine, radiation oncology, and guideline development methodology. The current guideline is the 5th version, an updated version of the 4th edition. In this guideline, 6 key questions (KQs) were updated or proposed after a collaborative review by the working group, and 7 statements were developed, or revised, or discussed based on a systematic review using the MEDLINE, Embase, Cochrane Library, and KoreaMed database. Over the past 2 years, there have been significant changes in systemic treatment, leading to major updates and revisions focused on this area.Additionally, minor modifications have been made in other sections, incorporating recent research findings. The level of evidence and grading of recommendations were categorized according to the Grading of Recommendations, Assessment, Development and Evaluation system. Key factors for recommendation included the level of evidence, benefit, harm, and clinical applicability. The working group reviewed and discussed the recommendations to reach a consensus. The structure of this guideline remains similar to the 2022 version.Earlier sections cover general considerations, such as screening, diagnosis, and staging of endoscopy, pathology, radiology, and nuclear medicine. In the latter sections, statements are provided for each KQ based on clinical evidence, with flowcharts supporting these statements through meta-analysis and references. This multidisciplinary, evidence-based gastric cancer guideline aims to support clinicians in providing optimal care for gastric cancer patients.
9.Effects of Anti-Obesity Strategies on Bone Mineral Density: A Comprehensive Meta-Analysis of Randomized Controlled Trials
Myung Jin KIM ; Seonok KIM ; Han Na JUNG ; Chang Hee JUNG ; Woo Je LEE ; Yun Kyung CHO
Journal of Obesity & Metabolic Syndrome 2025;34(1):41-53
Background:
Although an appropriate weight management strategy is essential for obese individuals, weight loss can have adverse effects on bone mineral density (BMD). We conducted a systematic review of randomized controlled trials to evaluate changes in BMD after the implementation of various weight loss strategies.
Methods:
The PubMed, Embase, Web of Science, and Cochrane Library databases were searched to find articles published from database inception until June 2023. Randomized controlled trials of various treatments for obese patients that reported changes in BMD were selected. The primary outcome was BMD of the whole body, lumbar spine, and total hip, measured using dual X-ray absorptiometry.
Results:
Eighteen randomized controlled trials involving 2,510 participants with obesity were included in the analysis. At follow-up examination, the BMD of the lumbar spine decreased significantly after metabolic surgery (mean difference [MD]= –0.40 g/cm2 ; 95% confidence interval [CI], –0.73 to –0.07; I2 = 0%); lifestyle and pharmacological interventions did not result in a significant decrease in BMD at any location. Metabolic surgery also produced the most substantial difference in weight, with an MD of –3.14 (95% CI, –3.82 to –2.47).
Conclusion
This meta-analysis is the first to examine the effects of all categories of anti-obesity strategies, including the use of anti-obesity medications, on BMD. Bariatric metabolic surgery can have adverse effects on BMD. Moreover, medications can be used as a treatment for weight loss without compromising bone quality.
10.The Effects of Nicotine on Re-endothelialization, Inflammation, and Neoatherosclerosis After Drug-Eluting Stent Implantation in a Porcine Model
Seok OH ; Ju Han KIM ; Saleem AHMAD ; Yu Jeong JIN ; Mi Hyang NA ; Munki KIM ; Jeong Ha KIM ; Dae Sung PARK ; Dae Young HYUN ; Kyung Hoon CHO ; Min Chul KIM ; Doo Sun SIM ; Young Joon HONG ; Seung-won LEE ; Youngkeun AHN ; Myung Ho JEONG
Korean Circulation Journal 2025;55(1):50-64
Background and Objectives:
Cigarette smoking is a major risk factor for atherosclerosis.Nicotine, a crucial constituent of tobacco, contributes to atherosclerosis development and progression. However, evidence of the association between nicotine and neointima formation is limited. We aimed to evaluate whether nicotine enhances neointimal hyperplasia in the native epicardial coronary arteries of pigs after percutaneous coronary intervention (PCI) with drug-eluting stents (DES).
Methods:
After coronary angiography (CAG) and quantitative coronary angiography (QCA), we implanted 20 DES into 20 pigs allocated to 2 groups: no-nicotine (n=10) and nicotine (n=10) groups. Post-PCI CAG and QCA were performed immediately. Follow-up CAG, QCA, optical coherence tomography (OCT), and histopathological analyses were performed 2 months post-PCI.
Results:
Despite intergroup similarities in the baseline QCA findings, OCT analysis showed that the nicotine group had a smaller mean stent and lumen areas, a larger mean neointimal area, greater percent area stenosis, and higher peri-strut fibrin and inflammation scores than the no-nicotine group. In immunofluorescence analysis, the nicotine group displayed higher expression of CD68 and α-smooth muscle actin but lower CD31 expression than the no-nicotine group.
Conclusions
Nicotine inhibited re-endothelialization and promoted inflammation and NIH after PCI with DES in a porcine model.

Result Analysis
Print
Save
E-mail