1.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
2.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
3.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
4.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
5.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
6.Efficacy and safety of ruxolitinib in the treatment of myelofibrosis
Wanwan WANG ; Jun YE ; Hai CHENG ; Wei YAO ; Guiling LIU
China Pharmacy 2025;36(14):1781-1785
OBJECTIVE To explore the efficacy and safety of ruxolitinib in the treatment of myelofibrosis (MF). METHODS A retrospective collection of data was conducted on 42 MF patients who were treated with ruxolitinib in a standardized manner for more than 6 months in the Third People’s Hospital of Bengbu from September 2018 to April 2024. The clinical symptom scores, spleen size reduction, and MF grading of the patients before and after treatment were analyzed. Additionally, the occurrence of adverse reactions with a causality assessment result of “definite”“probable” or “possible” was recorded. The patients’ survival status was followed up. RESULTS After 6 months of treatment, both clinical symptom scores and the total score were significantly decreased than before treatment (P<0.05). The length and thickness of the spleen were significantly shorter than before treatment (P<0.05). MF classification in 5 patients decreased by 1 level compared with baseline, 1 case was level 2 and dropped to level 0, 14 patients remained stable. The main adverse reactions were anemia (26 cases), thrombocytopenia (14 cases), infection (11 cases), and gastrointestinal discomfort (9 cases). Thirty-nine patients survived, with a survival rate of 92.86%. CONCLUSIONS Ruxolitinib can effectively improve the clinical symptoms of patients with MF, shrink the spleen, stabilize and even improve MF grading, and holds promise for bringing long-term survival benefits to MF patients. Adverse reactions are mainly anemia, thrombocytopenia, infection and gastrointestinal discomfort.
7.The Role of Mechanical Sensitive Ion Channel Piezo in Digestive System Diseases
Si-Qi WANG ; Xiang-Yun YAN ; Yan-Qiu LI ; Fang-Li LUO ; Jun-Peng YAO ; Pei-Tao MA ; Yu-Jun HOU ; Hai-Yan QIN ; Yun-Zhou SHI ; Ying LI
Progress in Biochemistry and Biophysics 2024;51(8):1883-1894
The Piezo protein is a non-selective mechanosensitive cation channel that exhibits sensitivity to mechanical stimuli such as pressure and shear stress. It converts mechanical signals into bioelectric activity within cells, thus triggering specific biological responses. In the digestive system, Piezo protein plays a crucial role in maintaining normal physiological activities, including digestion, absorption, metabolic regulation, and immune modulation. However, dysregulation in Piezo protein expression may lead to the occurrence of several pathological conditions, including visceral hypersensitivity, impairment of intestinal mucosal barrier function, and immune inflammation.Therefore, conducting a comprehensive review of the physiological functions and pathological roles of Piezo protein in the digestive system is of paramount importance. In this review, we systematically summarize the structural and dynamic characteristics of Piezo protein, its expression patterns, and physiological functions in the digestive system. We particularly focus on elucidating the mechanisms of action of Piezo protein in digestive system tumor diseases, inflammatory diseases, fibrotic diseases, and functional disorders. Through the integration of the latest research findings, we have observed that Piezo protein plays a crucial role in the pathogenesis of various digestive system diseases. There exist intricate interactions between Piezo protein and multiple phenotypes of digestive system tumors such as proliferation, apoptosis, and metastasis. In inflammatory diseases, Piezo protein promotes intestinal immune responses and pancreatic trypsinogen activation, contributing to the development of ulcerative colitis, Crohn’s disease, and pancreatitis. Additionally, Piezo1, through pathways involving co-action with the TRPV4 ion channel, facilitates neutrophil recruitment and suppresses HIF-1α ubiquitination, thereby mediating organ fibrosis in organs like the liver and pancreas. Moreover, Piezo protein regulation by gut microbiota or factors like age and gender can result in increased or decreased visceral sensitivity, and alterations in intestinal mucosal barrier structure and permeability, which are closely associated with functional disorders like irritable bowel sydrome (IBS) and functional consitipaction (FC). A thorough exploration of Piezo protein as a potential therapeutic target in digestive system diseases can provide a scientific basis and theoretical support for future clinical diagnosis and treatment strategies.
8.Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome (version 2024)
Junyu WANG ; Hai JIN ; Danfeng ZHANG ; Rutong YU ; Mingkun YU ; Yijie MA ; Yue MA ; Ning WANG ; Chunhong WANG ; Chunhui WANG ; Qing WANG ; Xinyu WANG ; Xinjun WANG ; Hengli TIAN ; Xinhua TIAN ; Yijun BAO ; Hua FENG ; Wa DA ; Liquan LYU ; Haijun REN ; Jinfang LIU ; Guodong LIU ; Chunhui LIU ; Junwen GUAN ; Rongcai JIANG ; Yiming LI ; Lihong LI ; Zhenxing LI ; Jinglian LI ; Jun YANG ; Chaohua YANG ; Xiao BU ; Xuehai WU ; Li BIE ; Binghui QIU ; Yongming ZHANG ; Qingjiu ZHANG ; Bo ZHANG ; Xiangtong ZHANG ; Rongbin CHEN ; Chao LIN ; Hu JIN ; Weiming ZHENG ; Mingliang ZHAO ; Liang ZHAO ; Rong HU ; Jixin DUAN ; Jiemin YAO ; Hechun XIA ; Ye GU ; Tao QIAN ; Suokai QIAN ; Tao XU ; Guoyi GAO ; Xiaoping TANG ; Qibing HUANG ; Rong FU ; Jun KANG ; Guobiao LIANG ; Kaiwei HAN ; Zhenmin HAN ; Shuo HAN ; Jun PU ; Lijun HENG ; Junji WEI ; Lijun HOU
Chinese Journal of Trauma 2024;40(5):385-396
Traumatic supraorbital fissure syndrome (TSOFS) is a symptom complex caused by nerve entrapment in the supraorbital fissure after skull base trauma. If the compressed cranial nerve in the supraorbital fissure is not decompressed surgically, ptosis, diplopia and eye movement disorder may exist for a long time and seriously affect the patients′ quality of life. Since its overall incidence is not high, it is not familiarized with the majority of neurosurgeons and some TSOFS may be complicated with skull base vascular injury. If the supraorbital fissure surgery is performed without treatment of vascular injury, it may cause massive hemorrhage, and disability and even life-threatening in severe cases. At present, there is no consensus or guideline on the diagnosis and treatment of TSOFS that can be referred to both domestically and internationally. To improve the understanding of TSOFS among clinical physicians and establish standardized diagnosis and treatment plans, the Skull Base Trauma Group of the Neurorepair Professional Committee of the Chinese Medical Doctor Association, Neurotrauma Group of the Neurosurgery Branch of the Chinese Medical Association, Neurotrauma Group of the Traumatology Branch of the Chinese Medical Association, and Editorial Committee of Chinese Journal of Trauma organized relevant experts to formulate Chinese expert consensus on the diagnosis and treatment of traumatic supraorbital fissure syndrome ( version 2024) based on evidence of evidence-based medicine and clinical experience of diagnosis and treatment. This consensus puts forward 12 recommendations on the diagnosis, classification, treatment, efficacy evaluation and follow-up of TSOFS, aiming to provide references for neurosurgeons from hospitals of all levels to standardize the diagnosis and treatment of TSOFS.
9.Pulsed thulium laser combined with pulsed thulium laser injection for the treatment of failed urethral anastomosis
Jian LI ; Da-Chao ZHENG ; Hai-Jun YAO ; Jin HUANG ; Zhong-Lin CAI ; Zhi-Kang CAI ; Yan-Ting SHEN ; Zhong WANG
National Journal of Andrology 2024;30(5):419-423
Objective:To investigate the clinical effect of pulsed thulium laser(PTL)combined with triamcinolone acetonide injection in the treatment of failed posterior urethral anastomosis(FPUA).Methods:This retrospective study included 35 male pa-tients treated in Gongli Hospital for failed posterior urethral anastomosis from January 2018 to December 2023.All the patients under-went direct-vision internal urethrotomy(DVIU)with transurethral PTL(the PTL group,n=15)or transurethral plasma(the TUP group,n=20),and all received intralesional injection of triamcinolone acetonide.We followed up the patients for a median of 21 months,recorded the age,length of urethral stricture,operation time,pre-and post-operative maximum urinary flow rate(Qmax),postoperative complications and recurrence of urethral stricture,and compared the data obtained between the two groups.Results:All the patients smoothly completed the treatment procedures.No statistically significant differences were observed in the age,length of urethral stricture,operation time and postoperative complications between the two groups(P>0.05).The median follow-up time for the thulium laser group and plasma group was 21.0 months(IQR 16.0-24.0)and 21.0 months(IQR 17.0-25.0),respectively,with a statistically significant difference observed in the maximum urine flow rate before and after surgery at the 12-month mark(P<0.01).No significant disparity was found in terms of relapse-free survival between the two groups(P=0.398)Conclusion:Pulsed thulium laser combined with triamcinolone acetonide injection can effectively maintain a short-term cicatricial stability of the ure-thral stricture and satisfactory urethral patency,obviously superior to plasmotomy as a remedial treatment of urethral stricture after failed posterior urethral anastomosis.
10.Mechanism of icariin inhibiting the proliferation of human prostate cancer PC-3 cells:An exploration based on cell metabolomics
Tao WANG ; Wei WANG ; Wen-Jun XIONG ; Zi-Jing ZHANG ; Fei WANG ; Yao-Hui PENG ; Yan CHEN ; Hai-Ping ZENG ; Li-Jie LUO
National Journal of Andrology 2024;30(11):963-973
Objective:To study the mechanism of icariin inhibiting the proliferation of human PCa PC-3 cells based on cell metabolomics technology.Methods:We determined the proliferation activity of human PC-3 cells by methyl thiazolyl tetrazolium(MTT)assay,and compared the proliferation of the PC-3 cells among the control,5-fluorouracil and icariin intervention groups.Using the Bligh Dyer method,we extracted endogenous metabolites from the cells,analyzed the metabolic profile by ultra-high pressure liquid chromatography tandem quadrupole time-of-flight mass spectrometry,identified the differential metabolites by principal component anal-ysis and orthogonal partial least-squares discrimination analysis,and enriched the metabolic pathways based on the MetaboAnalyst data-base.Results:Icariin significantly inhibited the proliferation of human PCa PC-3 cells.A total of 89 differential metabolites were i-dentified,mainly including amino acids,phosphatidylcholine,phosphatidylethanolamine,lysophosphatidylcholine,and lysophosphati-dylethanolamine,all with the tendency to return to the normal level after icariin intervention.Icariin significantly downregulated the metabolic levels of the glycerophospholipid metabolites phosphatidylcholine,phosphatidylethanolamine,lysophosphatidylcholine and ly-sophosphatidylethanolamine,and upregulated those of amino acid metabolites tryptophan,leucine,and proline in the PC-3 cells.Conclusion:Icariin inhibits the proliferation of human PCa PC-3 cells,which may be closely related to its regulatory effect on lipid metabolism(glycerophospholipid metabolism)and amino acid metabolism.

Result Analysis
Print
Save
E-mail