1.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics.
2.Diagnostic Techniques and Risk Prediction for Cardiovascular-kidney-metabolic (CKM) Syndrome
Song HOU ; Lin-Shan ZHANG ; Xiu-Qin HONG ; Chi ZHANG ; Ying LIU ; Cai-Li ZHANG ; Yan ZHU ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(10):2585-2601
Cardiovascular disease (CVD), chronic kidney disease (CKD), and metabolic disorders are the 3 major chronic diseases threatening human health, which are closely related and often coexist, significantly increasing the difficulty of disease management. In response, the American Heart Association (AHA) proposed a novel disease concept of “cardiovascular-kidney-metabolic (CKM) syndrome” in October 2023, which has triggered widespread concern about the co-treatment of heart and kidney diseases and the prevention and treatment of metabolic disorders around the world. This review posits that effectively managing CKM syndrome requires a new and multidimensional paradigm for diagnosis and risk prediction that integrates biological insights, advanced technology and social determinants of health (SDoH). We argue that the core pathological driver is a “metabolic toxic environment”, fueled by adipose tissue dysfunction and characterized by a vicious cycle of systemic inflammation and oxidative stress, which forms a common pathway to multi-organ injury. The at-risk population is defined not only by biological characteristics but also significantly impacted by adverse SDoH, which can elevate the risk of advanced CKM by a factor of 1.18 to 3.50, underscoring the critical need for equity in screening and care strategies. This review systematically charts the progression of diagnostic technologies. In diagnostics, we highlight a crucial shift from single-marker assessments to comprehensive multi-marker panels. The synergistic application of traditional biomarkers like NT-proBNP (reflecting cardiac stress) and UACR (indicating kidney damage) with emerging indicators such as systemic immune-inflammation index (SII) and Klotho protein facilitates a holistic evaluation of multi-organ health. Furthermore, this paper explores the pivotal role of non-invasive monitoring technologies in detecting subclinical disease. Techniques like multi-wavelength photoplethysmography (PPG) and impedance cardiography (ICG) provide a real-time window into microcirculatory and hemodynamic status, enabling the identification of early, often asymptomatic, functional abnormalities that precede overt organ failure. In imaging, progress is marked by a move towards precise, quantitative evaluation, exemplified by artificial intelligence-powered quantitative computed tomography (AI-QCT). By integrating AI-QCT with clinical risk factors, the predictive accuracy for cardiovascular events within 6 months significantly improves, with the area under the curve (AUC) increasing from 0.637 to 0.688, demonstrating its potential for reclassifying risk in CKM stage 3. In the domain of risk prediction, we trace the evolution from traditional statistical tools to next-generation models. The new PREVENT equation represents a major advancement by incorporating key kidney function markers (eGFR, UACR), which can enhance the detection rate of CKD in primary care by 20%-30%. However, we contend that the future lies in dynamic, machine learning-based models. Algorithms such as XGBoost have achieved an AUC of 0.82 for predicting 365-day cardiovascular events, while deep learning models like KFDeep have demonstrated exceptional performance in predicting kidney failure risk with an AUC of 0.946. Unlike static calculators, these AI-driven tools can process complex, multimodal data and continuously update risk profiles, paving the way for truly personalized and proactive medicine. In conclusion, this review advocates for a paradigm shift toward a holistic and technologically advanced framework for CKM management. Future efforts must focus on the deep integration of multimodal data, the development of novel AI-driven biomarkers, the implementation of refined SDoH-informed interventions, and the promotion of interdisciplinary collaboration to construct an efficient, equitable, and effective system for CKM screening and intervention.
3.Improvement effect and mechanism of Wuling San on TGF-β1-induced fibrosis, inflammation, and oxidative stress damage in HK-2 cells.
Jun WU ; Xue-Ning JING ; Fan-Wei MENG ; Xiao-Ni KONG ; Jiu-Wang MIAO ; Cai-Xia ZHANG ; Hai-Lun LI ; Yun HAN
China Journal of Chinese Materia Medica 2025;50(5):1247-1254
This study investigated the effect of Wuling San on transforming growth factor-β1(TGF-β1)-induced fibrosis, inflammation, and oxidative stress in human renal tubular epithelial cells(HK-2) and its mechanism of antioxidant stress injury. HK-2 cells were cultured in vitro and divided into a control group, a TGF-β1 model group, and three treatment groups receiving Wuling San-containing serum at low(2.5%), medium(5.0%), and high(10.0%) doses. TGF-β1 was used to establish the model in all groups except the control group. CCK-8 was used to analyze the effect of different concentrations of Wuling San on the activity of HK-2 cells with or without TGF-β1 stimulation. The expression of key fibrosis molecules, including actin alpha 2(Acta2), collagen type Ⅰ alpha 1 chain(Col1α1), collagen type Ⅲ alpha 1 chain(Col3α1), TIMP metallopeptidase inhibitor 1(Timp1), and fibronectin 1(Fn1), was detected using qPCR. The expression levels of inflammatory cytokines, including tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-8(IL-8), and interleukin-4(IL-4), were measured using ELISA kits. Glutathione peroxidase(GSH-Px), malondialdehyde(MDA), catalase(CAT), and superoxide dismutase(SOD) biochemical kits were used to analyze the effect of Wuling San on TGF-β1-induced oxidative stress injury in HK-2 cells, and the expression of nuclear factor E2-related factor 2(Nrf2), heme oxygenase 1(HO-1), and NAD(P)H quinone oxidoreductase 1(NQO1) was analyzed by qPCR and immunofluorescence. The CCK-8 results indicated that the optimal administration concentrations of Wuling San were 2.5%, 5.0%, and 10.0%. Compared with the control group, the TGF-β1 model group showed significantly increased levels of key fibrosis molecules(Acta2, Col1α1, Col3α1, Timp1, and Fn1) and inflammatory cytokines(TNF-α, IL-1β, IL-6, IL-8, and IL-4). In contrast, the Wuling San administration groups were able to dose-dependently inhibit the expression levels of key fibrosis molecules and inflammatory cytokines compared with the TGF-β1 model group. Wuling San significantly increased the activities of GSH-Px, CAT, and SOD enzymes in TGF-β1-stimulated HK-2 cells and significantly inhibited the level of MDA. Furthermore, compared with the control group, the TGF-β1 model group exhibited a significant reduction in the expression of Nrf2, HO-1, and NQO1 genes and proteins. After Wuling San intervention, the expression of Nrf2, HO-1, and NQO1 genes and proteins was significantly increased. Correlation analysis showed that antioxidant stress enzymes(GSH-Px, CAT, and SOD) and Nrf2 signaling were significantly negatively correlated with key fibrosis molecules and inflammatory cytokines in the TGF-β1-stimulated HK-2 cell model. In conclusion, Wuling San can inhibit TGF-β1-induced fibrosis in HK-2 cells by activating the Nrf2 signaling pathway, improving oxidative stress injury, and reducing inflammation.
Humans
;
Oxidative Stress/drug effects*
;
Transforming Growth Factor beta1/metabolism*
;
Fibrosis/genetics*
;
Cell Line
;
Drugs, Chinese Herbal/pharmacology*
;
Epithelial Cells/immunology*
;
Inflammation/metabolism*
4.Multifaceted mechanisms of Danggui Shaoyao San in ameliorating Alzheimer's disease based on transcriptomics and metabolomics.
Min-Hao YAN ; Han CAI ; Hai-Xia DING ; Shi-Jie SU ; Xu-Nuo LI ; Zi-Qiao XU ; Wei-Cheng FENG ; Qi-Qing WU ; Jia-Xin CHEN ; Hong WANG ; Qi WANG
China Journal of Chinese Materia Medica 2025;50(8):2229-2236
This study explored the potential therapeutic targets and mechanisms of Danggui Shaoyao San(DSS) in the prevention and treatment of Alzheimer's disease(AD) through transcriptomics and metabolomics, combined with animal experiments. Fifty male C57BL/6J mice, aged seven weeks, were randomly divided into the following five groups: control, model, positive drug, low-dose DSS, and high-dose DSS groups. After the intervention, the Morris water maze was used to assess learning and memory abilities of mice, and Nissl staining and hematoxylin-eosin(HE) staining were performed to observe pathological changes in the hippocampal tissue. Transcriptomics and metabolomics were employed to sequence brain tissue and identify differential metabolites, analyzing key genes and metabolites related to disease progression. Reverse transcription-quantitative polymerase chain reaction(RT-qPCR) was employed to validate the expression of key genes. The Morris water maze results indicated that DSS significantly improved learning and cognitive function in scopolamine(SCOP)-induced model mice, with the high-dose DSS group showing the best results. Pathological staining showed that DSS effectively reduced hippocampal neuronal damage, increased Nissl body numbers, and reduced nuclear pyknosis and neuronal loss. Transcriptomics identified seven key genes, including neurexin 1(Nrxn1) and sodium voltage-gated channel α subunit 1(Scn1a), and metabolomics revealed 113 differential metabolites, all of which were closely associated with synaptic function, oxidative stress, and metabolic regulation. RT-qPCR experiments confirmed that the expression of these seven key genes was consistent with the transcriptomics results. This study suggests that DSS significantly improves learning and memory in SCOP model mice and alleviates hippocampal neuronal pathological damage. The mechanisms likely involve the modulation of synaptic function, reduction of oxidative stress, and metabolic balance, with these seven key genes serving as important targets for DSS in the treatment of AD.
Animals
;
Alzheimer Disease/genetics*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Mice, Inbred C57BL
;
Metabolomics
;
Transcriptome/drug effects*
;
Maze Learning/drug effects*
;
Hippocampus/metabolism*
;
Humans
;
Disease Models, Animal
;
Memory/drug effects*
5.Clinical and genetic characteristics of congenital adrenal hyperplasia: a retrospective analysis.
Cai-Jun WANG ; Ya-Wei ZHANG ; Da-Peng LIU ; Juan JIN ; Zhao-Hui LI ; Jing GUO ; Yao-Dong ZHANG ; Hai-Hua YANG ; Wen-Qing KANG
Chinese Journal of Contemporary Pediatrics 2025;27(11):1367-1372
OBJECTIVES:
To study the clinical and genetic characteristics of children with congenital adrenal hyperplasia (CAH).
METHODS:
Clinical data, laboratory findings, and genetic test results of 63 children diagnosed with CAH at Henan Children's Hospital from January 2017 to December 2024 were retrospectively reviewed.
RESULTS:
Of the 63 patients, the mean age at the first visit was (21 ± 14) days; 29 (46%) were of male sex and 34 (54%) were of female sex. The predominant clinical manifestations were poor weight gain or weight loss (92%, 58/63), poor feeding (84%, 53/63), skin hyperpigmentation (83%, 52/63), and female external genital anomalies (100%, 34/34). Laboratory abnormalities included hyponatremia (87%, 55/63), hyperkalemia (68%, 43/63), metabolic acidosis (68%, 43/63), and markedly elevated 17-hydroxyprogesterone (92%, 58/63), testosterone (89%, 56/63), and adrenocorticotropic hormone (81%, 51/63). Among 49 patients who underwent genetic testing, CYP21A2 variants were identified in 90% (44/49), with c.293-13A/C>G (33%, 30/91) and large deletions/gene conversions (29%, 26/91) being the most frequent; STAR (8%, 4/49) and HSD3B2 (2%, 1/49) variants were also detected. Following hormone replacement therapy, electrolyte disturbances were corrected in 57 cases, with significant reductions in 17-hydroxyprogesterone, adrenocorticotropic hormone, and testosterone levels (P<0.001).
CONCLUSIONS
CAH presenting in neonates or young infants is characterized by electrolyte imbalance, external genital anomalies, and abnormal hormone levels. Genetic testing enables definitive subtype classification; in CYP21A2-related CAH, c.293-13A/C>G is a hotspot variant. These findings underscore the clinical value of genetic testing for early diagnosis and genetic counseling in CAH. Citation:Chinese Journal of Contemporary Pediatrics, 2025, 27(11): 1367-1372.
Humans
;
Adrenal Hyperplasia, Congenital/diagnosis*
;
Male
;
Female
;
Retrospective Studies
;
Infant
;
Infant, Newborn
6.Basic and Clinical Research of Fecal Microbiota Transplantation in The Treatment of Central Nervous System Diseases
Hong-Ru LI ; Cai-Hong LEI ; Shu-Wen LIU ; Yuan YANG ; Hai-Xia CHEN ; Run ZHANG ; Yin-Jie CUI ; Zhong-Zheng LI
Progress in Biochemistry and Biophysics 2024;51(11):2921-2935
As a microbial therapy method, fecal microbiota transplantation (FMT) has attracted the attention of researchers in recent years. As one of the most direct and effective methods to improve gut microbiota, FMT achieves therapeutic benefits by transplanting functional gut microbiota from healthy human feces into the intestines of patients to reconstruct new gut microbiota. FMT has been proven to be an effective treatment for gastrointestinal diseases such as Clostridium difficile infection, irritable bowel syndrome, and inflammatory bowel disease. In addition, the clinical and basic research of FMT outside the gastrointestinal system is also emerging. It is worth noting that there is bidirectional communication between the gut microbial community and the central nervous system (CNS) through the gut-brain axis. Some gut bacteria can synthesize and release neurotransmitters such as glutamate, gamma-aminobutyric acid (GABA) and dopamine. Imbalanced gut microbiota may interfere with the normal levels of these neurotransmitters, thereby affecting brain function. Gut microbiota can also produce metabolites that may cross the blood-brain barrier and affect CNS function. FMT may affect the occurrence and development of CNS and its related diseases by reshaping the gut microbiota of patients through a variety of pathways such as nerves, immunity, and metabolites. This article introduces the development of FMT and the research status of FMT in China, and reviews the basic and clinical research of FMT in neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease), neurotraumatic diseases (spinal cord injury, traumatic brain injury) and stroke from the characteristics of three types of nervous system diseases, the characteristics of intestinal flora, and the therapeutic effect and mechanism of fecal microbiota transplantation, summarize the common mechanism of fecal microbiota transplantation in the treatment of CNS diseases and the therapeutic targets. We found that the common mechanisms of FMT in the treatment of nervous system diseases may include the following 3 categories through summary and analysis. (1) Gut microbiota metabolites, such as SCFAs, TMAO and LPS. (2) Inflammatory factors and immune inflammatory pathways such as TLR-MyD88 and NF-κB. (3) Neurotransmitter 5-HT. In the process of reviewing the studies, we found the following problems. (1) In basic researches on the relationship between FMT and CNS diseases, there are relatively few studies involving the autonomic nervous system pathway. (2) Clinical trial studies have shown that FMT improves the severity of patients’ symptoms and may be a promising treatment for a variety of neurological diseases. (3) The improvement of clinical efficacy is closely related to the choice of donor, especially emphasizing that FMT from healthy and young donors may be the key to the improvement of neurological diseases. However, there are common challenges in current research on FMT, such as the scientific and rigorous design of FMT clinical trials, including whether antibiotics are used before transplantation or different antibiotics are used, as well as different FMT processes, different donors, different functional analysis methods of gut microbiota, and the duration of FMT effect. Besides, the safety of FMT should be better elucidated, especially weighing the relationship between the therapeutic benefits and potential risks of FMT carefully. It is worth mentioning that the clinical development of FMT even exceeds its basic research. Science and TIME rated FMT as one of the top 10 breakthroughs in the field of biomedicine in 2013. FMT therapy has great potential in the treatment of nervous system diseases, is expected to open up a new situation in the medical field, and may become an innovative weapon in the medical field.
7.The neuroprotective effect of W1302 on acute ischemic stroke in rats
Shao-feng XU ; Jiang LI ; Jie CAI ; Nan FENG ; Mi ZHANG ; Ling WANG ; Wei-ping WANG ; Hai-hong HUANG ; Yan WANG ; Xiao-liang WANG
Acta Pharmaceutica Sinica 2024;59(9):2539-2544
2-(4-Methylthiazol-5-yl) ethyl nitrate hydrochloride (W1302) is a nitro containing derivative of clomethiazole, which is a novel neuroprotective agent with both carbon monoxide (NO) donor and weak
8.Research on population pharmacokinetics of propofol injection in adult patients under general anesthesia
Jin-Xia LI ; An-Cheng GU ; Fu-Miao YUAN ; Cai LI ; Hai-Jun DENG ; Zhong-Yuan XU
The Chinese Journal of Clinical Pharmacology 2024;40(14):2124-2128
Objective To quantitatively assess the influence of various factors on the pharmacokinetic parameters of propofol and to develop a propofol population pharmacokinetic model tailored for Chinese patients.Methods Thirty patients scheduled for selective abdominal surgeries received an anesthesia dose of propofol at 2.0 mg·kg-1.The concentration of propofol in collected venous blood samples was measured using liquid chromatography-tandem mass spectrometry.Polymorphisms in metabolizing enzyme genes were detected through Sanger sequencing technology.Pharmacokinetic parameters were computed,and models were constructed and evaluated using Phoenix Winnonlin software.Results Through software analysis,the drug's in vivo process was best described by a three-compartment model.The population mean values for the central compartment clearance rate(CL),shallow peripheral compartment clearance rate(Q2),deep peripheral compartment clearance rate(Q3),central compartment volume of distribution(V),shallow peripheral compartment volume of distribution(V2),and deep peripheral compartment volume of distribution(V3)were 1.71 L·min-1,1.31 L·min-1,1.51 L·min-1,5.92 L,19.86 L and 99.06 L,respectively.Body weight was identified as a significant covariate affecting CL and V,and was incorporated into the model.Conclusion The evaluation of the final model demonstrates its substantial predictive capability,offering directional guidance for the clinical administration of propofol.
9.Clinical trial of different doses of remifentanil combined with sevoflurane in the treatment of patients undergoing spinal surgery
Hai-Tao TAN ; Tao CHEN ; Jian LI ; You-Cai LIN
The Chinese Journal of Clinical Pharmacology 2024;40(20):2958-2962
Objective To observe the efficacy and safety of different doses of remifentanil combined with sevoflurane in patients undergoing spinal surgery.Methods Patients undergoing spinal surgery were divided into low dose group,medium dose group and high dose group.Low dose group,medium dose group and high dose group were given 0.2,0.4 and 0.6 μg·kg-1·min-1 remifentanil by intravenous pump,respectively.Pain status[visual analogue score(VAS)],analgesic drug use,quality of recovery,hemodynamic indexes at different times[before surgery(T0),immediately after intubation(T1),intravenous pump injection of remifentanil 5 min(T2),10 min(T3),15 min(T4)]of the 3 groups were compared;and safety was evaluated.Results The low,medium and high dose groups were enrolled in 49,56 and 51 patients,respectively;the VAS scores at 6,12 and 24 h after operation in the low dose group were(2.48±0.51),(2.73±0.63)and(2.61±0.54)points,respectively;the VAS scores in the medium dose group were(2.36±0.54),(2.65±0.59)and(2.51±0.50)points,respectively;the VAS scores in the high dose group were(2.29±0.53),(2.53±0.57)and(2.44±0.52)points,respectively.There was no statistically significant difference between the groups(all P>0.05).The number of patient-controlled analgesia pump compressions in the low,medium and high dose groups were(3.27±0.96),(3.02±0.90)and(2.89±0.71)times,respectively;the number of remedial analgesia cases was 2 cases(4.08%),2 cases(3.57%)and 0 cases(0.00%),respectively.There was no statistically significant difference(all P>0.05).The recovery time of low,medium and high dose groups were(7.05±1.65),(8.24±2.17)and(9.03±2.48)min,respectively;the recovery time of consciousness were(11.26±2.73),(13.85±2.94)and(15.57±3.17)min,respectively;the extubation time were(16.34±3.05),(18.72±3.29)and(20.34±3.58)min,respectively.The differences were statistically significant(all P<0.05).There was no significant difference in blood oxygen saturation(SpO2),mean arterial pressure and heart rate at time points of T0,T1,T2,T3 and T4 among the three groups(all P>0.05).Adverse drug reactions in the 3 groups were mainly hypotension,nausea and vomiting,bradycardia,etc.The total incidence of adverse drug reactions in the high,medium and low dose groups was 11.76%(6 cases/51 cases),7.14%(4 cases/56 cases)and 8.16%(4 cases/49 cases),respectively.There were no statistically significant differences(P>0.05).Conclusion 0.2 μg·kg-1·min-1 remifentanil combined sevoflurane has better recovery quality and high safety in spinal surgery patients.
10.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.

Result Analysis
Print
Save
E-mail