1.Electroacupuncture at Sensitized Acupoints Relieves Somatic Referred Pain in Colitis Rats by Inhibiting Sympathetic-Sensory Coupling to Interfere with 5-HT Signaling Pathway.
Ying YANG ; Jin-Yu QU ; Hua GUO ; Hai-Ying ZHOU ; Xia RUAN ; Ying-Chun PENG ; Xue-Fang SHEN ; Jin XIONG ; Yi-Li WANG
Chinese journal of integrative medicine 2024;30(2):152-162
OBJECTIVE:
To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms.
METHODS:
Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS:
BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05).
CONCLUSION
EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.
Rats
;
Animals
;
Electroacupuncture
;
Rats, Sprague-Dawley
;
Serotonin
;
Acupuncture Points
;
Pain, Referred
;
Calcitonin Gene-Related Peptide
;
Signal Transduction
;
Colitis/therapy*
;
Indoles
;
Sulfonamides
2.Extraction process,enzymatic properties and practical application of glucuronic hydrolase in Scutellaria baicalensis stems and leaves
Yu-Jie CHENG ; Xu CHEN ; Yun-Hua LIU ; Zhi-Fang HUANG ; Yan CHEN ; Yu-Hong LIU ; Jin-Hai YI
Chinese Traditional Patent Medicine 2024;46(1):35-40
AIM To study the extraction process,enzymatic properties and practical application of glucuronic hydrolase in Scutellaria baicalensis stems and leaves(sbsl GUS).METHODS With granularity,water consumption,extraction time and extraction frequency as influencing factors,enzymatic activity as an evaluation index,the extraction process was optimized by orthogonal test on the basis of single factor test.The relationship between substrate(baicalin)concentration and enzymolysis rate,after which Vmax and Km were calculated,the effects of pH value,temperature and metal ion on enzymatic activity were investigated,pH stability and heat stability were evaluated.sbsl GUS was adotped in the enzymolysis of baicalin to prepare baicalein,then the effects of pH value,temperature,reaction time,initial substrate concentration and enzyme addition on transfer rate were investigated.RESULTS The optimal extraction process was determined to be 40 mesh for granularity,10 times for water consumption,15 min for extraction time,and 3 times for extraction frequency.The enzymolysis accorded with the kinetics of enzymatic reaction,Km was 0.006 3 mol/L,Vmax was 70.42 μmol/h,the strongest enzymatic activity was found at the pH value of 6.0,temperature of 45℃and metal ion of 100 mmol/L Cu2+,sbsl GUS demonstrated good stability at the ranges of 4.0-7.0 for pH value and 4-30℃for temperature.The optimal preparation process was determined to be 6.0 for pH value,45℃for temperature,more than 12 h for reaction time,67.2 mmol/L for initial substrate concentration,and 1 mL/0.269 mmol baicalin for enzyme addition,the transfer rate was 97.83%.CONCLUSION sbsl GUS enzymolysis exhibits high efficiency and mild condition,which can provide a simple preparation method for obtaining baicalein,and expand the application path of Scutellaria baicalensis stems and leaves.
3.The Application of Lipid Nanoparticle-delivered mRNA in Disease Prevention and Treatment
Wei-Lun SUN ; Ti-Qiang ZHOU ; Hai-Yin YANG ; Lu-Wei LI ; Yu-Hua WENG ; Jin-Chao ZHANG ; Yuan-Yu HUANG ; Xing-Jie LIANG
Progress in Biochemistry and Biophysics 2024;51(10):2677-2693
In recent years, nucleic acid therapy, as a revolutionary therapeutic tool, has shown great potential in the treatment of genetic diseases, infectious diseases and cancer. Lipid nanoparticles (LNPs) are currently the most advanced mRNA delivery carriers, and their emergence is an important reason for the rapid approval and use of COVID-19 mRNA vaccines and the development of mRNA therapy. Currently, mRNA therapeutics using LNP as a carrier have been widely used in protein replacement therapy, vaccines and gene editing. Conventional LNP is composed of four components: ionizable lipids, phospholipids, cholesterol, and polyethylene glycol (PEG) lipids, which can effectively load mRNA to improve the stability of mRNA and promote the delivery of mRNA to the cytoplasm. However, in the face of the complexity and diversity of clinical diseases, the structure, properties and functions of existing LNPs are too homogeneous, and the lack of targeted delivery capability may result in the risk of off-targeting. LNPs are flexibly designed and structurally stable vectors, and the adjustment of the types or proportions of their components can give them additional functions without affecting the ability of LNPs to deliver mRNAs. For example, by replacing and optimizing the basic components of LNP, introducing a fifth component, and modifying its surface, LNP can be made to have more precise targeting ability to reduce the side effects caused by treatment, or be given additional functions to synergistically enhance the efficacy of mRNA therapy to respond to the clinical demand for nucleic acid therapy. It is also possible to further improve the efficiency of LNP delivery of mRNA through machine learning-assisted LNP iteration. This review can provide a reference method for the rational design of engineered lipid nanoparticles delivering mRNA to treat diseases.
4.Full-field Anterior Chamber Angle Measurement Based on Optical Reflection Tomography
Bi-Wang LIU ; Jun-Ping ZHONG ; Hai-Na LIN ; Ya-Guang ZENG ; You-Ping YU ; Hong-Yi LI ; Ding-An HAN ; Jin-Ying CHEN
Progress in Biochemistry and Biophysics 2024;51(9):2240-2248
ObjectiveAngle-closure glaucoma (ACG) is one of the major eye-blinding diseases. To diagnose ACG, it is crucial to examine the anterior chamber angle. Current diagnostic tools include slit lamp gonioscopy, water gonioscopy, ultrasound biomicroscopy (UBM), and anterior segment optical coherence tomography (AS-OCT). Slit lamp and water gonioscopy allow convenient observation of the anterior chamber angle, but pose risks of invasive operation and eye infections. UBM can accurately measure the structure of the anterior chamber angle. However, it is complex to operate and unsuitable for patients, who have undergone trauma or ocular surgery. Although AS-OCT provides detailed images, it is costly. The aim of this study is to explore a non-invasive, non-destructive optical reflection tomography (ORT) technique. This technique can achieve low-cost three-dimensional imaging and full-field anterior chamber angle measurement of the porcine eye. MethodsThe experiment involved assembling an optical reflection tomography system, which included a complementary metal oxide semiconductor (CMOS) camera, a telecentric system, a stepper motor, and a white light source, achieving a spatial resolution of approximately 8.5 μm. The process required positioning the porcine eye at the center of the field of the imaging system and rotating it around its central axis using a stepper motor. Reflection projection images were captured at each angle with an exposure time of 1.0 ms and an interval of 2°. The collected reflection-projection data were processed using a filtered reflection tomography algorithm, generating a series of two-dimensional slice data. These slices essentially represented cross-sectional views of the three-dimensional structural image, and were reconstructed into a complete three-dimensional structural image. Based on the reconstructed three-dimensional structural image of the porcine eye, the anterior chamber angles at different positions were measured, and a distribution map of these angles was drawn. Simultaneously, the ORT measurements were compared with the standard results obtained from optical coherence tomography (OCT) to assess the accuracy of ORT measurements. ResultsIn this study, we successfully obtained the reflection projection data of a porcine eye using ORT technology, reconstructed its three-dimensional structural image, and measured the anterior chamber angle, generating the corresponding distribution map. To better distinguish the different structural parts of porcine eye, the three-dimensional structural image was marked with blue, green, and yellow dashed lines from the outer to the inner layers. The area between the blue and green dashed lines corresponded to the sclera. The area between the green and yellow dashed lines corresponded to the iris. The area inside the yellow dashed line corresponded to the pupil. The three-dimensional structural image clearly revealed the key anatomical features of the porcine eye. It was able to measure the anterior chamber angle at different positions. Additionally, the anterior chamber angle measurements of the porcine eye using ORT were compared with the measurements obtained using a TEL320C1 type OCT system, showing an average deviation of 0.51° and a mean square error
5.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,
6.Quercetin Alleviates Lipopolysaccharide-Induced Cardiac Inflammation via Inhibiting Autophagy and Programmed Cell Death
Hai Jin YU ; Liang Guo HU ; Quan Xiao GUO ; Bin Hua CAO ; Fei Zhao XIA ; Buhe AMIN
Biomedical and Environmental Sciences 2024;37(1):54-70
Objective The aim of this study is to explore the potential modulatory role of quercetin against Endotoxin or lipopolysaccharide (LPS) induced septic cardiac dysfunction.Methods Specific pathogen-free chicken embryos (n = 120) were allocated untreated control, phosphate buffer solution (PBS) vehicle, PBS with ethanol vehicle, LPS (500 ng/egg), LPS with quercetin treatment (10, 20, or 40 nmol/egg, respectively), Quercetin groups (10, 20, or 40 nmol/egg). Fifteen-day-old embryonated eggs were inoculated with abovementioned solutions via the allantoic cavity. At embryonic day 19, the hearts of the embryos were collected for histopathological examination, RNA extraction, real-time polymerase chain reaction, immunohistochemical investigations, and Western blotting.Results They demonstrated that the heart presented inflammatory responses after LPS induction. The LPS-induced higher mRNA expressions of inflammation-related factors (TLR4, TNFα, MYD88, NF-κB1, IFNγ, IL-1β, IL-8, IL-6, IL-10, p38, MMP3, and MMP9) were blocked by quercetin with three dosages. Quercetin significantly decreased immunopositivity to TLR4 and MMP9 in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of TLR4, IFNγ, MMP3, and MMP9 when compared with the LPS group. Quercetin treatment prevented LPS-induced increase in the mRNA expression of Claudin 1 and ZO-1, and significantly decreased protein expression of claudin 1 when compared with the LPS group. Quercetin significantly downregulated autophagy-related gene expressions (PPARα, SGLT1, APOA4, AMPKα1, AMPKα2, ATG5, ATG7, Beclin-1, and LC3B) and programmed cell death (Fas, Bcl-2, CASP1, CASP12, CASP3, and RIPK1) after LPS induction. Quercetin significantly decreased immunopositivity to APOA4, AMPKα2, and LC3-II/LC3-I in the treatment group when compared with the LPS group. Quercetin significantly decreased protein expressions of AMPKα1, LC3-I, and LC3-II. Quercetin significantly decreased the protein expression to CASP1 and CASP3 by immunohistochemical investigation or Western blotting in treatment group when compared with LPS group.Conclusion Quercetin alleviates cardiac inflammation induced by LPS through modulating autophagy, programmed cell death, and myocardiocytes permeability.
7.Mechanism of Osteosarcopenia and Its Control by Exercise
Dan JIN ; Xin-Yu DAI ; Miao LIU ; Xue-Jie YI ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(5):1105-1118
Osteosarcopenia (OS) is a multifactorial, multiaetiologic degenerative metabolic syndrome in which sarcopenia coexists with osteoporosis, and its influences are related to aging-induced mechanics, genetics, inflammatory factors, endocrine disorders, and irregular lifestyles. With the accelerated aging process in our country, osteosarcopenia has become a public health problem that cannot be ignored, with a higher risk of falls, fractures, impaired mobility and death. In recent years, scholars at home and abroad have conducted a lot of research on osteosarcopenia, but their pathogenesis is still unclear. Understanding the signaling pathways associated with osteosarcopenia is of great significance for further research on the pathogenesis of these disorders and for finding new targets for treatment. Studies have shown that activation of the PI3K/Akt signaling pathway promotes osteoblast differentiation as well as skeletal muscle regeneration, indicating that inhibition of thePI3K/Akt signaling pathway is closely related to the development of osteosarcopenia. Muscle factor-mechanical stress interactions can maintain osteoblast viability by activating the Wnt/β-catenin signaling pathway, suggesting that Wnt signaling is important in muscle and bone crosstalk. The Notch signaling pathway also plays an important role in improving bone and muscle mass and function, but different researchers hold different views, which need to be further validated and refined in subsequent studies. Exercise, as an existing non-pharmacological treatment with strong and sustained effects on physical function and muscle strength, also significantly increases bone density in osteoporosis patients, which may be mainly due to the fact that exercise induces changes in the form and function of bones, in the form of muscular pulling and indirectly improves the bone mass, and changes in the bone strength can also change the number, shape as well as the function of the muscles. At the same time, the mechanism of different exercise modalities focuses on different aspects, and there are differences in exercise time, exercise intensity, and therapeutic effects in the implementation of interventions. Aerobic exercise can improve the quality of skeletal muscle and increase the expression of osteogenesis-related genes by stimulating mitochondrial biosynthesis, as well as improve the quality and strength of bones and muscles through the Wnt/β- catenin and PI3K/Akt signaling pathways, effectively preventing and controlling the occurrence of musculoskeletal disorders. High-intensity resistance exercise has a significant effect on improving the quality of muscles and bone mineral density, but older people with osteosarcopenia suffer from a decline in muscle quality and strength, and a decline in bone mineral density, which makes them very susceptible to fracture, so they should select the intensity of the training in a gradual and orderly manner, from small to large. What kind of exercise intensity and exercise modalities are most effective in improving the occurrence and development of osteosarcopenia needs to be further investigated. Therefore, this paper mainly reviews the epidemiology of osteosarcopenia, diagnostic criteria, the related signaling pathways (PI3K/Akt pathway, Wnt/β-catenin pathway, Notch pathway, NF-κB pathway) that jointly regulate the metabolic process of myocytes and skeletal cells, as well as the interventional effects of different exercise modes on osteosarcopenia, with the aim of providing theoretical bases for the clinical treatment of osteosarcopenia, as well as enhancing the preventive capacity of the disease in old age.
8.The Role and Possible Mechanisms of Exercise in Combating Osteoporosis by Modulating The Bone Autophagy Pathway
Xin-Yu DAI ; Bin LI ; Dan JIN ; Xue-Jie YI ; Rui-Qi HUANG ; Hai-Ning GAO
Progress in Biochemistry and Biophysics 2024;51(7):1589-1603
Osteoporosis leads to an imbalance in bone remodelling, where bone resorption is greater than bone formation and osteoclast degradation increases, resulting in severe bone loss. Autophagy is a lysosomal degradation pathway that regulates the proliferation, differentiation, and apoptosis of various bone cells (including osteoblasts, osteoclasts, and osteoclasts), and is deeply involved in the bone remodelling process. In recent years, the role of autophagy in the progression of osteoporosis and related bone metabolic diseases has received more and more attention, and it has become a research hotspot in this field. Summarising the existing studies, it is found that senile osteoporosis is the result of a combination of factors. On the one hand, it is the imbalance of bone remodelling and the increase of bone resorption/bone formation ratio with ageing, which causes progressive bone loss. On the other hand, aging leads to a general decrease in the level of autophagy, a decrease in the activity of osteoblasts and osteoclasts, and an inhibition of osteogenic differentiation. The lack of oestrogen leads to the immune system being in a low activation state, and the antioxidant capacity is weakened and inflammatory response is increased, inducing autophagy-related proteins to participate in the transmission of inflammatory signals, excessive accumulation of reactive oxygen species (ROS) in the skeleton, and negatively regulating bone formation. In addition, with aging and the occurrence of related diseases, glucocorticoid treatments also mediate autophagy in bone tissue cells, contributing to the decline in bone strength. Exercise, as an effective means of combating osteoporosis, improves bone biomechanical properties and increases bone density. It has been found that exercise induces oxidative stress, energy imbalance, protein defolding and increased intracellular calcium ions in the organism, which in turn activates autophagy. In bone, exercise of different intensities activates messengers such as ROS, PI3K, and AMP. These messengers signal downstream cascades, which in turn induce autophagy to restore dynamic homeostasis in vivo. During exercise, increased production of AMP, PI3K, and ROS activate their downstream effectors, AMPK, Akt, and p38MAPK, respectively, and these molecules in turn lead to activation of the autophagy pathway. Activation of AMPK inhibits mTOR activity and phosphorylates ULK1 at different sites, inducing autophagy. AMPK and p38 up-regulate per-PGC-1α activity and activate transcription factors in the nucleus, resulting in increased autophagy and lysosomal genes. Together, they activate FoxOs, whose transcriptional activity controls cellular processes including autophagy and can act on autophagy key proteins, while FoxOs proteins are expressed in osteoblasts. Exercise also regulates the expression of mTORC1, FoxO1, and PGC-1 through the PI3K/Akt signalling pathway, which ultimately plays a role in the differentiation and proliferation of osteoblasts and regulates bone metabolism. In addition, BMPs signaling pathway and long chain non-coding RNAs also play a role in the proliferation and differentiation of osteoblasts and autophagy process under exercise stimulation. Therefore, exercise may become a new molecular regulatory mechanism to improve osteoporosis through the bone autophagy pathway, but the specific mechanism needs to be further investigated. How exercise affects bone autophagy and thus prevents and treats bone-related diseases will become a future research hotspot in the fields of biology, sports medicine and sports science, and it is believed that future studies will further reveal its mechanism and provide new theoretical basis and ideas.
9.Effect of different blood pressure stratification on renal function in diabetic population
Yong-Gang CHEN ; Shou-Ling WU ; Jin-Feng ZHANG ; Shuo-Hua CHEN ; Li-Wen WANG ; Kai YANG ; Hai-Liang XIONG ; Ming GAO ; Chun-Yu JIANG ; Ye-Qiang LIU ; Yan-Min ZHANG
Medical Journal of Chinese People's Liberation Army 2024;49(6):663-669
Objective To investigate the effect of varying blood pressure stratification on renal function in the diabetic population.Methods A prospective cohort study was conducted,enrolling 9 489 diabetic patients from a total of 101 510 Kailuan Group employees who underwent health examinations between July 2006 and October 2007.The follow-up period was(8.6±4.0)years.Participants were categorized into four groups based on their baseline blood pressure levels:normal blood pressure(systolic blood pressure<120 mmHg and diastolic blood pressure<80 mmHg),elevated blood pressure(systolic blood pressure 120-130 mmHg and diastolic blood pressure<80 mmHg),stage 1 hypertension(systolic blood pressure 130-140 mmHg and/or diastolic blood pressure 80-90 mmHg),and stage 2 hypertension(systolic blood pressure≥140 mmHg and/or diastolic blood pressure≥90 mmHg).The incidence density of chronic kidney disease(CKD)was compared among these groups.A multivariate Cox proportional hazards regression model was employed to assess the effects of different blood pressure levels on renal function in diabetic patients,with the stability of the results confirmed using a multivariate time-dependent Cox proportional hazards model.Sensitivity analysis was conducted after excluding cases of cardiovascular disease(CVD)during follow-up,and cases using antihypertensive and antidiabetic medications at baseline.Results(1)At baseline,stage 1 hypertension patients demonstrated statistically significant higher differences with age and body mass index(BMI)compared to normal blood pressure group(P<0.05).(2)By the end of the follow-up,2 294 cases of CKD were identified,including 1 117 cases of estimated glomerular filtration rate(eGFR)decline and 1 575 cases of urinary protein.The incidences density of CKD,eGFR decline and urinary protein for stage 1 hypertension group were 39.4,16.3 and 25.5 per thousand person-years,respectively,all of which were statistically significant different from normal blood pressure group(log-rank test,P<0.01).(3)Multivariate Cox regression analysis revealed that,compared to the normal blood pressure group,stage 1 hypertension was associated with a 29%increased risk of CKD(HR=1.29,95%CI 1.09-1.52)and a 40%increased risk of eGFR decline(HR=1.40,95%CI 1.08-1.80)in diabetic individuals.Conclusion Stage 1 hypertension significantly increases the risk of CKD and eGFR decline in diabetic individuals,with a particularly notable effect on the risk of eGFR decline.
10.Design of dilation incision device for neurosurgical procedures
Yu-Wei HAN ; Li-Gang CHEN ; Xin-Yu YANG ; Shun GONG ; Guo-Biao LIANG ; Hai JIN ; Jie-Yu LAI
Chinese Medical Equipment Journal 2024;45(10):37-40
Objective To design and evaluate a dilation incision device capable of facilitating stable support and flexible adjustment during neurosurgical procedures.Methods The dilation incision device was composed of a support plate,an adjustment assembly,a brain support ring,a rotation assembly,an electric motor,an expansion assembly and a neck support ring.The support plate was made of high-strength stainless steel;the adjustment assembly was made up of a first screw,a lifting groove,a slide bar and a nut;the brain support ring was fixed to the adjustment assembly through a support rod,with an outer layer of medical-grade silicone and an inner layer of stainless steel skeleton;the rotation assembly connected the brain support ring with the expansion assembly and consisted of a rotating shaft,a connecting rod and a rotating lug;a high-precision direct current servo motor was selected for the device;the expansion assembly included a spring,an expansion plate and a moving plate,which realized auto expansion or contraction through spring pressure;the neck support ring had its outer layer made of flexible polyurethane foam and inner layer being a stainless steel skeleton.The device had its stability and safety evaluated by static and dynamic tests at different heights(50,100,150 mm)and angles(0°,30°,60°),which was compared with the traditional fixation device to verify its application effect.Results Static and dynamic tests indicated the device showed high stability and safety in different heights and angles,and gained advantages over the traditional device in stability,convenient operation and surgical field visualization.Conclusion The device developed meets the requirements of neurosurgical procedures,and enhances the safety and portability of neurosurgical procedures.[Chinese Medical Equipment Journal,2024,45(10):37-40]

Result Analysis
Print
Save
E-mail