1.HerbRNomes: ushering in the post-genome era of modernizing traditional Chinese medicine research
Yu TIAN ; Hai SHANG ; Gui-bo SUN ; Wei-dong ZHANG
Acta Pharmaceutica Sinica 2025;60(2):300-313
With the completion of the "Human Genome Project" and the smooth progress of the "Herbal Genome Project", the research wave of RNAomics is gradually advancing, opening the research gateway for the modernization of traditional Chinese medicine (TCM) and initiating the post-genome era of medicinal plant RNA research. Therefore, this article proposes for the first time the concept of HerbRNomes, which involves constructing databases of medicinal plant, medicinal fungus, and medicinal animal RNA at different stages, from different origins, and in different organs. This research aims to explore the role of HerbRNA in self-genetic information transmission, functional regulation, as well as cross-species regulation functional mechanisms and key technologies. It also investigates application scenarios, providing a theoretical basis and research ideas for the resistance of TCM or medicinal plants to adversity and stress, molecular assistant breeding, and the development of small nucleic acid drugs. This article reviews recent research progress in elucidating the molecular mechanisms of the transmission and expression of genetic information, self-regulation and cross-species regulation of herbs at the RNA level, along with key technologies. It proposes a development strategy for small nucleic acid drugs based on HerbRNomes, providing theoretical support and guidance for the modernization of TCM based on HerbRNomes research.
2.Mechanisms of Gut Microbiota Influencing Reproductive Function via The Gut-Gonadal Axis
Ya-Qi ZHAO ; Li-Li QI ; Jin-Bo WANG ; Xu-Qi HU ; Meng-Ting WANG ; Hai-Guang MAO ; Qiu-Zhen SUN
Progress in Biochemistry and Biophysics 2025;52(5):1152-1164
Reproductive system diseases are among the primary contributors to the decline in social fertility rates and the intensification of aging, posing significant threats to both physical and mental health, as well as quality of life. Recent research has revealed the substantial potential of the gut microbiota in improving reproductive system diseases. Under healthy conditions, the gut microbiota maintains a dynamic balance, whereas dysfunction can trigger immune-inflammatory responses, metabolic disorders, and other issues, subsequently leading to reproductive system diseases through the gut-gonadal axis. Reproductive diseases, in turn, can exacerbate gut microbiota imbalance. This article reviews the impact of the gut microbiota and its metabolites on both male and female reproductive systems, analyzing changes in typical gut microorganisms and their metabolites related to reproductive function. The composition, diversity, and metabolites of gut bacteria, such as Bacteroides, Prevotella, and Firmicutes, including short-chain fatty acids, 5-hydroxytryptamine, γ-aminobutyric acid, and bile acids, are closely linked to reproductive function. As reproductive diseases develop, intestinal immune function typically undergoes changes, and the expression levels of immune-related factors, such as Toll-like receptors and inflammatory cytokines (including IL-6, TNF-α, and TGF-β), also vary. The gut microbiota and its metabolites influence reproductive hormones such as estrogen, luteinizing hormone, and testosterone, thereby affecting folliculogenesis and spermatogenesis. Additionally, the metabolism and absorption of vitamins can also impact spermatogenesis through the gut-testis axis. As the relationship between the gut microbiota and reproductive diseases becomes clearer, targeted regulation of the gut microbiota can be employed to address reproductive system issues in both humans and animals. This article discusses the regulation of the gut microbiota and intestinal immune function through microecological preparations, fecal microbiota transplantation, and drug therapy to treat reproductive diseases. Microbial preparations and drug therapy can help maintain the intestinal barrier and reduce chronic inflammation. Fecal microbiota transplantation involves transferring feces from healthy individuals into the recipient’s intestine, enhancing mucosal integrity and increasing microbial diversity. This article also delves into the underlying mechanisms by which the gut microbiota influences reproductive capacity through the gut-gonadal axis and explores the latest research in diagnosing and treating reproductive diseases using gut microbiota. The goal is to restore reproductive capacity by targeting the regulation of the gut microbiota. While the gut microbiota holds promise as a therapeutic target for reproductive diseases, several challenges remain. First, research on the association between gut microbiota and reproductive diseases is insufficient to establish a clear causal relationship, which is essential for proposing effective therapeutic methods targeting the gut microbiota. Second, although gut microbiota metabolites can influence lipid, glucose, and hormone synthesis and metabolism via various signaling pathways—thereby indirectly affecting ovarian and testicular function—more in-depth research is required to understand the direct effects of these metabolites on germ cells or granulosa cells. Lastly, the specific efficacy of gut microbiota in treating reproductive diseases is influenced by multiple factors, necessitating further mechanistic research and clinical studies to validate and optimize treatment regimens.
3.Exercise-induced Mitohormesis in Counteracting Age-related Sarcopenia
Zi-Yi ZHANG ; Mei MA ; Hai BO ; Tao LIU ; Yong ZHANG
Progress in Biochemistry and Biophysics 2025;52(6):1349-1361
Sarcopenia, an age-related degenerative skeletal muscle disorder characterized by progressive loss of muscle mass, diminished strength, and impaired physical function, poses substantial challenges to global healthy aging initiatives. The pathogenesis of this condition is fundamentally rooted in mitochondrial dysfunction, manifested through defective energy metabolism, disrupted redox equilibrium, imbalanced dynamics, and compromised organelle quality control. This comprehensive review elucidates the central role of exercise-induced mitochondrial hormesis as a critical adaptive mechanism counteracting sarcopenia. Mitohormesis represents an evolutionarily conserved stress response wherein sublethal mitochondrial perturbations, particularly transient low-dose reactive oxygen species (ROS) generated during muscle contraction, activate cytoprotective signaling cascades rather than inflicting macromolecular damage. The mechanistic foundation of this process involves ROS functioning as essential signaling molecules that activate the Keap1 nuclear factor erythroid 2 related factor 2 (Nrf2) antioxidant response element pathway. This activation drives transcriptional upregulation of phase II detoxifying enzymes including superoxide dismutase (SOD) and glutathione peroxidase (GPx), thereby enhancing cellular redox buffering capacity. Crucially, Nrf2 engages in bidirectional molecular crosstalk with peroxisome proliferator activated receptor gamma coactivator 1 alpha (PGC-1α), the principal regulator orchestrating mitochondrial biogenesis through coordinated induction of nuclear respiratory factors 1 and 2 (NRF1/2) along with mitochondrial transcription factor A (Tfam), collectively facilitating mitochondrial DNA replication and respiratory complex assembly. Concurrently, exercise-induced alterations in cellular energy status, specifically diminished ATP to AMP ratios, potently activate AMP activated protein kinase (AMPK). This energy-sensing kinase phosphorylates PGC-1α while concomitantly stimulating NAD dependent deacetylase sirtuin 1 (SIRT1) activity, which further potentiates PGC-1α function through post-translational deacetylation. The integrated AMPK/PGC-1α/SIRT1 axis coordinates mitochondrial biogenesis, optimizes network architecture through regulation of fusion proteins mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and optic atrophy protein 1 (OPA1), and enhances clearance of damaged organelles via selective activation of mitophagy receptors BCL2 interacting protein 3 (Bnip1) and FUN14 domain containing 1 (FNDC1). Exercise further stimulates the mitochondrial unfolded protein response (UPRmt), increasing molecular chaperones such as heat shock protein 60 (HSP60) and HSP10 to preserve proteostasis. Within the mitochondrial matrix, SIRT3 fine-tunes metabolic flux through deacetylation of electron transport chain components, improving phosphorylation efficiency while attenuating pathological ROS emission. Distinct exercise modalities differentially engage these pathways. Aerobic endurance training primarily activates AMPK/PGC-1α signaling and UPRmt to expand mitochondrial volume and oxidative capacity. Resistance training exploits mechanical tension to acutely stimulate mechanistic target of rapamycin complex 1 (mTORC1) mediated protein synthesis while modulating dynamin related protein 1 (Drp1) phosphorylation dynamics to support mitochondrial network reorganization. High intensity interval training generates potent metabolic oscillations that rapidly amplify AMPK/PGC-1α and Nrf2 activation, demonstrating particular efficacy in insulin-resistant phenotypes. Strategically designed concurrent training regimens synergistically integrate these adaptations. Mitochondrial-nuclear communication through tricarboxylic acid cycle metabolites and mitochondrially derived peptides such as mitochondrial open reading frame of 12s rRNA-c (MOTS-c) coordinates systemic metabolic reprogramming, with exercise-responsive myokines including fibroblast growth factor 21 (FGF-21) mediating inter-tissue signaling to reduce inflammation and enhance insulin sensitivity. This integrated framework provides the scientific foundation for precision exercise interventions targeting mitochondrial pathophysiology in sarcopenia, incorporating biomarker monitoring and exploring pharmacological potentiators including nicotinamide riboside and MOTS-c mimetics. Future investigations should delineate temporal dynamics of mitohormesis signaling and epigenetic regulation to optimize therapeutic approaches for age-related muscle decline.
4.An Analysis of YU Hai-Bo's Experience in Treating Paediatric Cerebral Palsy by Using"Jianpi Yishen Triple-Needle Grouping Acupoints"
Man YANG ; Ting LIU ; Ji-Kang YANG ; Hai-Bo YU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(1):147-153
This article introduces the clinical approach and acupuncture characteristics of the traditional Chinese medicine practitioner Professor YU Hai-Bo in treating paediatric cerebral palsy using the"Jianpi Yishen Triple-Needle Grouping Acupoints".Guided by the theory of growth and development of"viscera-meridian-brain"growth and development,Professor YU believed that"insufficiency of spleen and kidney"is the core pathogenesis of paediatric cerebral palsy,and the treatment concept of"treating from the spleen and kidney"was proposed.He inherited and innovated the triple-needle grouping acupoints therapy and establishing the system of"Jianpi Yishen Triple-Needle Grouping Acupoints".Before regular acupuncture,the abdomen and dorsum are pricked to freely regulate the middle energizer,and the upper limbs are selected as"Hegu(LI4),Waiguan(SJ5),Quchi[(LI11),three acupoints on the hand]+ Neiguan(PC6)";the lower limbs are selected as"Zusanli(ST36),Sanyinjiao(SP6),Taichong[(LR3),three acupoints on the foot];"Shenmai(BL62),Zhaohai(KI6),Yongquan(KI1)",spleen and kidney are regulated simultaneously,and the head acupoints include Sishencong(EX-HN1),intelligence tri-needling,cerebral tri-needling,temporal tri-needling,mind-calming needling and bilateral Fengchi(GB20).In order to regulate the spirit and benefit the intellect,the matching acupoints are modified according to the disease and the syndromes.At the same time,it is supplemented with music therapy and auricular point seed-pressing.Emphasis is placed on the simultaneous regulation of"child-parent-doctor"and"treating the person"rather than the"treating the disease".
5.Epidemiological Investigation of Dampness Syndrome Manifestations in the Population at Risk of Cerebrovascular Disease
Xiao-Jia NI ; Hai-Yan HUANG ; Qing SU ; Yao XU ; Ling-Ling LIU ; Zhuo-Ran KUANG ; Yi-Hang LI ; Yi-Kai ZHANG ; Miao-Miao MENG ; Yi-Xin GUO ; Xiao-Bo YANG ; Ye-Feng CAI
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):531-539
Objective To make an epidemiological investigation on traditional Chinese medicine(TCM)dampness syndrome manifestations in the population at risk of cerebrovascular diseases in Guangdong area.Methods A cross-sectional study was conducted to analyze the clinical data related to the risk of cerebrovascular diseases in 330 Guangdong permanent residents.The diagnosis of dampness syndrome,quantitative scoring of dampness syndrome and rating of the risk of stroke were performed for the investigation of the distribution pattern of dampness syndrome and its influencing factors.Results(1)A total of 306(92.73%)study subjects were diagnosed as dampness syndrome.The percentage of dampness syndrome in the risk group was 93.82%(258/275),which was slightly higher than that of the healthy group(48/55,87.27%),but the difference was not statistically significant(χ2 = 2.91,P = 0.112).The quantitative score of dampness syndrome in the risk group was higher than that of the healthy group,and the difference was statistically significance(Z =-2.24,P = 0.025).(2)Among the study subjects at risk of cerebrovascular disease,evaluation time(χ2 = 26.11,P = 0.001),stroke risk grading(χ2= 8.85,P = 0.031),and history of stroke or transient ischemic attack(TIA)(χ2 = 9.28,P = 0.015)were the factors influencing the grading of dampness syndrome in the population at risk of cerebrovascular disease.Conclusion Dampness syndrome is the common TCM syndrome in the population of Guangdong area.The manifestations of dampness syndrome are more obvious in the population with risk factors of cerebrovascular disease,especially in the population at high risk of stroke,and in the population with a history of stroke or TIA.The assessment and intervention of dampness syndrome should be taken into account for future project of stroke prevention in Guangdong.
6.Status of wearable flexible monitoring devices based on organic field effect transistors in biomedical field
Kai GUO ; Cui-Zhi TANG ; Bo SUN ; Duan-Qiang XIAO ; Yuan-Biao LIU ; En-Xiang JIAO ; Jie GONG ; Hai-Jun ZHANG
Chinese Medical Equipment Journal 2024;45(1):93-100
The working principle and development of flexible semiconductor devices based on organic field effect transistor(OFET)technology were introduced.The current research status of OFET-based wearable flexible monitoring devices were reviewed,including biomechanical monitoring devices,tattoo biomonitoring devices and cellular detection devices and etc.The deficiencies of OFET-based wearable flexible monitoring devices were analyzed,and it's pointed out that miniaturization,personalization and diversification were the directions for the development of the future OFET-based wearable flexible moni-toring devices.[Chinese Medical Equipment Journal,2024,45(1):93-100]
7.Efficacies of proximal femoral nail anti-rotation internal fixation in different body positions on elderly unstable femoral intertrochanteric fractures
Ling-Yan ZHAO ; Hong-Bo ZHAO ; Dong-Hai YANG ; Hui LIANG ; Cheng-Ming CAO ; Xiao-Ning LIU
Journal of Regional Anatomy and Operative Surgery 2024;33(3):239-243
Objective To investigate the efficacies of proximal femoral nail anti-rotation(PFNA)internal fixation in traction bed supine position and non-traction bed lateral position in the treatment of elderly unstable femoral intertrochanteric fractures.Methods The clinical data of patients with unstable femoral intertrochanteric fractures treated with PFNA internal fixation in our hospital were retrospec-tively analyzed,41 patients received treatment in traction bed supine position were included in the supine position group,and 55 patients treated received treatment in non-traction bed lateral position were included in the lateral position group.The perioperative related indicators,surgical reduction,hip Harris score,and incidence of complications in the two groups were analyzed.Results The operation time and incision length of patients in the lateral position group were shorter than those in the supine position group,and the intraoperative blood loss and fluoroscopy times were less than those in the supine position group,with statistically significant differences(P<0.05).There was no significant difference in the anesthesia mode,blood transfusion or hospital stay of patients between the two groups(P>0.05).There was no significant difference in the incidence of postoperative complications of patients between the two groups(P>0.05).There was no significant difference in neck-shaft angle,tip-apex distance or hip Harris score of patients between the two groups(P>0.05).Conclusion PFNA internal fixation in traction bed supine position and non-traction bed lateral position have the same effect in the treatment of elderly unstable femoral intertrochanteric fractures,while the non-traction bed lateral position for treatment has more advantages in shortening operation time,decreasing intraoperative blood loss,and reducing radiation exposure.
8.Role of Ferroptosis in Bone Homeostasis and Traditional Chinese Medicine Intervention: A Review
Bo WEI ; Juan LI ; Yiwei JIANG ; Yuying ZHOU ; Chunhui LUO ; Zhongchao YU ; Pei LIU ; Yunxiang HAI
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(3):249-257
Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone microstructure degeneration and bone mass loss, which has a high prevalence and disability rate. Effective prevention and treatment of OP is a major difficulty in the medical community. The nature of OP is that multiple pathological factors lead to the imbalance of human bone homeostasis maintained by osteoblasts and osteoclasts. Ferroptosis is a non-apoptotic cell death pathway, and its fundamental cause is cell damage caused by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is involved in and affects the occurrence and development of OP, which leads to OP by mediating the imbalance of bone homeostasis. Ferroptosis is an adjustable form of programmed cell death. The intervention of ferroptosis can regulate the damage degree and death process of osteoblasts and osteoclasts, which is beneficial to maintain bone homeostasis, slow down the development process of OP, improve the clinical symptoms of patients, reduce the risk of disability, and improve their quality of life. However, there are few studies on ferroptosis in OP. Traditional Chinese medicine (TCM) is a medical treasure with unique characteristics and great application value in China. It has been widely used in China and has a long history. It has the multi-target and multi-pathway advantages in the treatment of OP, with high safety, few toxic and side effects, and low treatment cost, and has a significant effect in clinical application. The intervention of TCM in ferroptosis to regulate bone homeostasis may be a new direction for the prevention and treatment of OP in the future. This article summarized the regulatory mechanisms related to ferroptosis, discussed the role of ferroptosis in bone homeostasis, and reviewed the current status and progress of active ingredients in TCM compounds and monomers in the regulation of OP through ferroptosis, so as to provide a theoretical basis for the participation of TCM in the prevention and treatment of OP in the future.
9.HIV-1 molecular transmission network among HIV/AIDS cases in Zhoushan City
CHEN Yuanjing ; LI Kefeng ; FAN Qin ; ZHANG Jiafeng ; WU Mingyu ; ZHANG Bo ; GU Songye ; WANG Hai ; CHENG Wei
Journal of Preventive Medicine 2024;36(10):834-837
Objective:
To investigate the characteristics of HIV-1 molecular transmission network among HIV/AIDS patients in Zhoushan City, Zhejing Province.
Methods:
The newly reported HIV/AIDS cases in Zhoushan City from 2020 to 2022 were selected. Basic information was collected and whole blood samples were obtained at the initial follow-up. The pol gene sequences of HIV-1 were amplified by RT-PCR and nested-PCR. HIV-1 subtypes were identified by Neighbor-Joining phylogenetic trees. The HIV-1 molecular transmission network was built and analyzed using Cytoscape 3.6.1 software.
Results:
A total of 222 HIV/AIDS cases were reported in Zhoushan City from 2020 to 2022, 200 whole blood samples were collected, and 152 sequences were obtained successfully, including 122 males (80.26%), 75 cases aged 50 years and above (49.34%), 109 cases with a junior high school education or below (71.71%), and 63 cases with commercial heterosexual contact (41.45%). The main subtypes were CRF07_BC and CRF01_AE, accounting for 45.39% and 21.05%, respectively. When the threshold of genetic distance was set to 1%, 20 molecular clusters were formed in 69 cases, with a clustering rate of 45.39%. Using the molecular network constituted by reported HIV/AIDS cases in 2020 as the baseline network, there were 2 active molecular clusters with ≥5 new cases in 2022, each with 9 cases, characterized mainly by individuals aged 50 or above, with a junior high school education or below, and transmission through commercial heterosexual sex.
Conclusions
The predominant HIV-1 subtypes among HIV/AIDS cases in Zhoushan City are CRF07_BC and CRF01_AE. Transmission through commercial heterosexual contact among middle-aged and elderly people is a main mode of HIV transmission.
10.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,


Result Analysis
Print
Save
E-mail