1.Role of dendritic cells in MYD88-mediated immune recognition and osteoinduction initiated by the implantation of biomaterials.
Zifan ZHAO ; Qin ZHAO ; Hu CHEN ; Fanfan CHEN ; Feifei WANG ; Hua TANG ; Haibin XIA ; Yongsheng ZHOU ; Yuchun SUN
International Journal of Oral Science 2023;15(1):31-31
Bone substitute material implantation has become an important treatment strategy for the repair of oral and maxillofacial bone defects. Recent studies have shown that appropriate inflammatory and immune cells are essential factors in the process of osteoinduction of bone substitute materials. Previous studies have mainly focused on innate immune cells such as macrophages. In our previous work, we found that T lymphocytes, as adaptive immune cells, are also essential in the osteoinduction procedure. As the most important antigen-presenting cell, whether dendritic cells (DCs) can recognize non-antigen biomaterials and participate in osteoinduction was still unclear. In this study, we found that surgical trauma associated with materials implantation induces necrocytosis, and this causes the release of high mobility group protein-1 (HMGB1), which is adsorbed on the surface of bone substitute materials. Subsequently, HMGB1-adsorbed materials were recognized by the TLR4-MYD88-NFκB signal axis of dendritic cells, and the inflammatory response was activated. Finally, activated DCs release regeneration-related chemokines, recruit mesenchymal stem cells, and initiate the osteoinduction process. This study sheds light on the immune-regeneration process after bone substitute materials implantation, points out a potential direction for the development of bone substitute materials, and provides guidance for the development of clinical surgical methods.
Biocompatible Materials/metabolism*
;
HMGB1 Protein/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Bone Substitutes/metabolism*
;
Dendritic Cells/metabolism*
2.Altered expression of 15-hydroxyprostaglandin dehydrogenase in chronic rhinosinusitis with nasal polyps.
Shan CHEN ; Jingcai CHEN ; Jianjun CHEN ; Yanjun WANG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2023;37(11):891-896
Objective:To investigate the expression level and regulatory mechanism of 15-hydroxyprostaglandin dehydrogenase(HPGD) in chronic rhinosinusitis with nasal polyps(CRSwNP). Methods:The expression pattern and level of HPGD in CRSwNP and control was observed using immunofluorescence, and western blot was used for analysis of HPGD expression in nasal polyp tissues. The effect of recombinant human high mobility group box-1(HMGB1) on HPGD expression in primary human nasal epithelial cells was observed, and the potential blocking effect of RAGE neutralizing antibody on HMGB1-induced HPGD expression was investigated. Results:The expression of HPGD was elevated in CRSwNP patients compared to the control, while the protein mainly localized at CD68-positive cells and epithelial cells. Recombinant human HMGB1 stimulated an increase in HPGD expression in primary human nasal mucosal epithelial cells at a time-dependent manner. Additionally, increased phosphorylation levels of MEK and elevated RAGE expression were also observed at 12 hours, but decreased at 24 hours after the incubation of HMGB1. The increase in the expression of HPGD induced by HMGB1 in primary human nasal epithelial cells was partly inhibited with RAGE neutralizing antibody. Conclusion:Elevated HPGD expression is observed in CRSwNP, predominantly in macrophages and epithelial cells. HMGB1 regulates HPGD expression through the RAGE-MEK signaling pathway, potentially providing a new target for future regulation of PGE2levels in CRSwNP.
Humans
;
Antibodies, Neutralizing/metabolism*
;
Chronic Disease
;
HMGB1 Protein/metabolism*
;
Mitogen-Activated Protein Kinase Kinases/metabolism*
;
Nasal Mucosa/metabolism*
;
Nasal Polyps/metabolism*
;
Rhinitis
3.MiR-340 mediates the involvement of high mobility group box 1 in the pathogenesis of liver fibrosis.
Sha Ling LI ; Pan Pan YI ; Ruo Chan CHEN ; Ze Bing HUANG ; Xing Wang HU ; Xue Gong FAN
Chinese Journal of Hepatology 2023;31(1):77-83
Objective: To explore the pathogenic mechanism of the miR-340/high mobility group box 1 (HMGB1) axis in the formation of liver fibrosis. Methods: A rat liver fibrosis model was established by injecting CCl(4) intraperitoneally. miRNAs targeting and validating HMGB1 were selected with gene microarrays after screening the differentially expressed miRNAs in rats with normal and hepatic fibrosis. The effect of miRNA expressional changes on HMGB1 levels was detected by qPCR. Dual luciferase gene reporter assays (LUC) was used to verify the targeting relationship between miR-340 and HMGB1. The proliferative activity of the hepatic stellate cell line HSC-T6 was detected by thiazolyl blue tetrazolium bromide (MTT) assay after co-transfection of miRNA mimics and HMGB1 overexpression vector, and the expression of extracellular matrix (ECM) proteins type I collagen and α-smooth muscle actin (SMA) was detected by western blot. Statistical analysis was performed by analysis of variance and the LSD-t test. Results: Hematoxylin-eosin and Masson staining results showed that the rat model of liver fibrosis was successfully established. Gene microarray analysis and bioinformatics prediction had detected eight miRNAs possibly targeting HMGB1, and animal model validation had detected miR-340. qPCR detection results showed that miR-340 had inhibited the expression of HMGB1, and a luciferase complementation assay suggested that miR-340 had targeted HMGB1. Functional experiments results showed that HMGB1 overexpression had enhanced cell proliferation activity and the expression of type I collagen and α-SMA, while miR-340 mimics had not only inhibited cell proliferation activity and the expression of HMGB1, type I collagen, and α-SMA, but also partially reversed the promoting effect of HMGB1 on cell proliferation and ECM synthesis. Conclusion: miR-340 targets HMGB1 to inhibit the proliferation and ECM deposition in hepatic stellate cells and plays a protective role during the process of liver fibrosis.
Animals
;
Rats
;
Cell Proliferation
;
Collagen Type I/metabolism*
;
Fibrosis
;
Hepatic Stellate Cells
;
HMGB1 Protein/genetics*
;
Liver Cirrhosis/pathology*
;
MicroRNAs/metabolism*
4.Electroacupuncture Improves Blood-Brain Barrier and Hippocampal Neuroinflammation in SAMP8 Mice by Inhibiting HMGB1/TLR4 and RAGE/NADPH Signaling Pathways.
Yuan WANG ; Qiang WANG ; Di LUO ; Pu ZHAO ; Sha-Sha ZHONG ; Biao DAI ; Jia-Jyu WANG ; Yi-Tong WAN ; Zhi-Bin LIU ; Huan YANG
Chinese journal of integrative medicine 2023;29(5):448-458
OBJECTIVE:
To investigate the molecular mechanisms underlying the beneficial effect of electroacupuncture (EA) in experimental models of Alzheimer's disease (AD) in vivo.
METHODS:
Senescence-accelerated mouse prone 8 (SAMP8) mice were used as AD models and received EA at Yingxiang (LI 20, bilateral) and Yintang (GV 29) points for 20 days. For certain experiments, SAMP8 mice were injected intravenously with human fibrin (2 mg). The Morris water maze test was used to assess cognitive and memory abilities. The changes of tight junctions of blood-brain barrier (BBB) in mice were observed by transmission electron microscope. The expressions of fibrin, amyloid- β (Aβ), and ionized calcium-binding adapter molecule 1 (IBa-1) in mouse hippocampus (CA1/CA3) were detected by reverse transcription-quantitative polymerase chain reaction (qRT-PCR), Western blot or immunohistochemical staining. The expression of fibrin in mouse plasma was detected by enzyme-linked immunosorbent assay. The expressions of tight junction proteins zonula occludens-1 and claudin-5 in hippocampus were detected by qRT-PCR and immunofluorescence staining. Apoptosis of hippocampal neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining.
RESULTS:
Fibrin was time-dependently deposited in the hippocampus of SAMP8 mice and this was inhibited by EA treatment (P<0.05 or P<0.01). Furthermore, EA treatment suppressed the accumulation of Aβ in the hippocampus of SAMP8 mice (P<0.01), which was reversed by fibrin injection (P<0.05 or P<0.01). EA improved SAMP8 mice cognitive impairment and BBB permeability (P<0.05 or P<0.01). Moreover, EA decreased reactive oxygen species levels and neuroinflammation in the hippocampus of SAMP8 mice, which was reversed by fibrin injection (P<0.05 or P<0.01). Mechanistically, EA inhibited the promoting effect of fibrin on the high mobility group box protein 1 (HMGB1)/toll-like receptor 4 (TLR4) and receptor for advanced glycation end products (RAGE)/nicotinamide adenine dinucleotide phosphate (NADPH) signaling pathways (P<0.01).
CONCLUSION
EA may potentially improve cognitive impairment in AD via inhibition of fibrin/A β deposition and deactivation of the HMGB1/TLR4 and RAGE/NADPH signaling pathways.
Mice
;
Humans
;
Animals
;
NADP/metabolism*
;
Toll-Like Receptor 4
;
HMGB1 Protein/metabolism*
;
Receptor for Advanced Glycation End Products/metabolism*
;
Blood-Brain Barrier/metabolism*
;
Neuroinflammatory Diseases
;
Electroacupuncture
;
Alzheimer Disease/therapy*
;
Hippocampus/metabolism*
;
Amyloid beta-Peptides/metabolism*
5.Lactate promotes HMGB1 phosphorylation and release via Akt signaling pathway in gastric cancer cells HGC-27.
Xue Lei CHEN ; Fei GE ; Meng Qi WAN ; Shi Mei QI ; Zhi Lin QI
Chinese Journal of Oncology 2023;45(11):919-925
Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.
Mice
;
Animals
;
Stomach Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
HMGB1 Protein/metabolism*
;
Phosphorylation
;
Lactic Acid
;
Mice, Inbred BALB C
;
Signal Transduction
6.Lactate promotes HMGB1 phosphorylation and release via Akt signaling pathway in gastric cancer cells HGC-27.
Xue Lei CHEN ; Fei GE ; Meng Qi WAN ; Shi Mei QI ; Zhi Lin QI
Chinese Journal of Oncology 2023;45(11):919-925
Objective: To investigate the molecular mechanism of how lactate induces high mobility group box 1 (HMGB1) release. Methods: Gastric cancer HGC-27 cells were divided into the control group and the lactate group (The cells were treated with lactate for 6 h). The level of HMGB1 in the cell culture medium was detected by enzyme-linked immunosorbent assay (ELISA), the localization of HMGB1 was detected using laser confocal microscopy, and the nuclear translocation of HMGB1 was detected using the nucleoplasmic separation assay. The phosphorylation and acetylation levels of HMGB1 were determined by co-immunoprecipitation, and Western blot was used to measure the phosphorylation of Akt and protein kinase C (PKC). HGC-27 cells were first treated with lactate and LY294002, the inhibitor of Akt, and then the phosphorylation of HMGB1 and Akt was analyzed by co-immunoprecipitation and Western blot, respectively. The localization of HMGB1 in cells was detected by laser confocal microscopy. EdU and Transwell assays were used to detect the proliferation and migration abilities of HGC-27 cells, respectively. HGC-27 cells were then injected into the BALB/C null mice for subcutaneous tumor implantation. Mice in the lactate group were intraperitoneally injected with lactate (0.2 g/kg/2 d), while those in the control group were intraperitoneally injected with an equal amount of PBS for 20 consecutive days. ELISA was used to detect the HMGB1 levels in the blood samples taken from the medial canthus vein of the mice, while co-immunoprecipitation and Western blot were used to detect the phosphorylation of HMGB1 and Akt in tumor tissue proteins, respectively. Results: The release levels of HMGB1 in the lactate group were (2 995.00±660.91) pg/ml and (696.33±22.03) pg/ml, after lactate treatment for 6 h and 12 h, respectively, both higher than those in the control group (485.00±105.83) pg/ml (P<0.001 and P=0.028, respectively). After lactate treatment for 6 h, the relative expression of HMGB1 protein in the cytoplasm of HGC-27 cells was 1.13±0.09, higher than that of the control group (0.83±0.07, P=0.001), while the relative expression of HMGB1 in the nucleus was 0.79±0.06, lower than that of the control group (1.07±0.06, P=0.007). The phosphorylation level of HMGB1 reached 1.41±0.09, which was higher than that of the control group (0.97±0.10, P=0.031). The phosphorylation level of Akt was 11.16±0.06, higher than that of the control group (0.91±0.022, P=0.002). The phosphorylation level and nuclear translocation of HMGB1 induced by lactate decreased obviously after Akt inhibition; the proliferation and migration abilities induced by lactate were also obviously inhibited after Akt inhibition. In vivo, the HMGB1 level in the peripheral blood was (1 280.70±389.66) pg/ml in the lactate group, which was obviously higher than that in the control group (595.11±44.75) pg/ml (P=0.008), and the phosphorylation levels of HMGB1 and Akt in tumor tissues in the lactate group were obviously enhanced compared with the control group. Conclusion: Lactate induces HMGB1 release through enhancing HMGB1 phosphorylation via the Akt signaling pathway.
Mice
;
Animals
;
Stomach Neoplasms/pathology*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
HMGB1 Protein/metabolism*
;
Phosphorylation
;
Lactic Acid
;
Mice, Inbred BALB C
;
Signal Transduction
7.Polydatin improves intestinal barrier injury after traumatic brain injury in rats by reducing oxidative stress and inflammatory response via activating SIRT1-mediated deacetylation of SOD2 and HMGB1.
Na QIN ; Lin HUANG ; Rui DONG ; Fen LI ; Xu Heng TANG ; Zhen Hua ZENG ; Xing Min WANG ; Hong YANG
Journal of Southern Medical University 2022;42(1):93-100
OBJECTIVE:
To investigate the protective effect against intestinal mucosal injury in rats following traumatic brain injury (TBI) and explore the underlying mechanism.
METHODS:
SD rat models of TBI were established by fluid percussion injury (FPI), and the specimens were collected at 12, 24, 48, and 72 h after TBI. Another 15 rats were randomly divided into shamoperated group (n=5), TBI with saline treatment (TBI+NS) group (n=5), and TBI with PD treatment (TBI+PD) group (treated with 30 mg/kg PD after TBI; n=5). Body weight gain and fecal water content of the rats were recorded, and after the treatments, the histopathology of the jejunum was observed, and the levels of D-lactic acid (D-LAC), diamine oxidase (DAO), ZO-1, claudin-5, and reactive oxygen species (ROS) were detected. Lipid peroxide (LPO) and superoxide dismutase (SOD) 2 content, jejunal pro-inflammatory factors (IL-6, IL-1β, and TNF- α), Sirt1 activity, SOD2 and HMGB1 acetylation level were also determined after the treatments.
RESULTS:
The rats showed significantly decreased body weight and fecal water content and progressively increased serum levels of D-LAC and DAO after TBI (P < 0.05) with obvious jejunal injury, significantly decreased expression levels of ZO-1 and claudin-5, lowered SOD2 and Sirt1 activity (P < 0.05), increased expression levels of LPO, ROS, and pro-inflammatory cytokines, and enhanced SOD2 and HMGB1 acetylation levels (P < 0.05). Compared with TBI+NS group, the rats in TBI+PD group showed obvious body weight regain, increased fecal water content, reduced jejunal pathologies, decreased D-LAC and DAO levels (P < 0.05), increased ZO-1, claudin-5, SOD2 expression levels and Sirt1 activity, and significantly decreased ROS, LPO, pro-inflammatory cytokines, and acetylation levels of SOD2 and HMGB1 (P < 0.05).
CONCLUSION
PD alleviates oxidative stress and inflammatory response by activating Sirt1-mediated deacetylation of SOD2 and HMGB1 to improve intestinal mucosal injury in TBI rats.
Animals
;
Brain Injuries, Traumatic
;
Glucosides/pharmacology*
;
HMGB1 Protein/metabolism*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Sirtuin 1/metabolism*
;
Stilbenes/pharmacology*
;
Superoxide Dismutase/metabolism*
8.Dihydromyricetin improves cardiac insufficiency by inhibiting HMGB1 in diabetic rats.
Si Yu LIU ; Qing LIU ; Qun Long PENG ; Yuan Fang ZHANG ; Jun Jie WANG
Journal of Southern Medical University 2022;42(5):641-648
OBJECTIVE:
To investigate the effect of dihydromyricetin (DHM) on cardiac insufficiency in diabetic rats and explore the underlying mechanism.
METHOD:
Twenty-four male SD rats were randomized equally into normal control group, type 2 diabetes (T2DM) group fed on a high-glucose and high-fat diet for 6 weeks with low-dose streptozotocin (STZ) injection, metformin (MET) group with daily intragastric administration of MET (150 mg/kg) for 8 weeks after T2DM modeling, and dihydromyricetin (DHM) group with daily intragastric administration of DHM (250 mg/kg) for 8 weeks after modeling. The levels of fasting blood glucose, low density lipoprotein (LDL-C), triglyceride (TG), total cholesterol (TC), high density lipoprotein (HDL-C) and glycosylated hemoglobin (HbA1c) of the rats were measured, and plasma levels of insulin and high mobility group protein-1 (HMGB1) were detected with ELISA. The cardiac function of the rats was assessed using color echocardiography, ECG was measured using a biological signal acquisition system, and myocardial pathology was observed with HE staining. The protein expressions of HMGB1, nuclear factor-κB (NF-κB) p65 and phospho-NF-κB p65 (p-NF-κB p65) in the myocardial tissue were detected using Western blotting.
RESULTS:
Compared with the control group, the rats in T2DM group showed significant anomalies in cardiac function after modeling with significantly increased plasma HMGB1 level and expressions of HMGB1, NF-κB p65 and p-NF-κB p65 proteins in the myocardial tissue (P < 0.05 or 0.01). Treatment with DHM significantly improved the indexes of cardiac function of the diabetic rats (P < 0.05 or 0.01), decreased plasma HMGB1 level and down-regulated the protein expressions of HMGB1 and p-NF-κB p65 in the myocardial tissue (P < 0.05 or 0.01).
CONCLUSION
DHM treatment can improve cardiac function in diabetic rats possibly by down-regulation of HMGB1 and phospho-NF-κB p65 expressions in the myocardium.
Animals
;
Diabetes Mellitus, Experimental/metabolism*
;
Diabetes Mellitus, Type 2/metabolism*
;
Flavonols
;
HMGB1 Protein
;
Heart Failure
;
Male
;
Metformin/therapeutic use*
;
NF-kappa B/metabolism*
;
Rats
;
Rats, Sprague-Dawley
9.Role of high-mobility group box 1 in cancer.
Juan XU ; Pengzuo TAO ; Dongjin LÜ ; Yu'e JIANG ; Quansong XIA
Journal of Central South University(Medical Sciences) 2022;47(4):505-511
High-mobility group box 1 (HMGB1) is a non-histone nuclear protein in most eukaryocytes. Inside the nucleus, HMGB1 plays an important role in several DNA events such as DNA repair, transcription, telomere maintenance, and genome stability. While outside the nucleus, it fulfils more complicated functions, including promoting cell proliferation, inflammation, angiogenesis, immune tolerance and immune escape, which may play a pro-tumoral role.Meanwhile, HMGB1 acts as an anti-tumoral protein by regulating immune cell recruitment and inducing immunogenic cell death (ICD) during the carcinogenesis process. Therefore, abnormal expression of HMGB1 is associated with oncogenesis, development, and metastasis of cancer, which may play a dual role of pro-tumor and anti-tumor.
Carcinogenesis
;
Cell Proliferation
;
HMGB1 Protein/metabolism*
;
Humans
;
Neoplasms/pathology*
;
Neovascularization, Pathologic
10.Preliminary study on time-dependent changes of intestinal tract and brain-gut axis in mice model of Parkinson's disease induced by paraquat.
Kai Dong WANG ; Bing Yang ZHANG ; Bao Fu ZHANG ; Min HUANG
Chinese Journal of Industrial Hygiene and Occupational Diseases 2022;40(3):161-169
Objective: To observe the intestinal time-dependent changes in Parkinson's disease (PD) mouse model constructed by intraperitoneal injection of paraquat (PQ) and to establish the brain-gut axis connection initially. Methods: In October 2019, 48 mice were randomly divided into treated group and control groups: treated 4-week (P-4) group, treated 6-week (P-6) group, treated 8-week (P-8) group, control 4-week (C-4) group, control 6-week (C-6) group, and control 8-week (C-8) group. The treated group was injected with 15 mg/kg PQ solution and the control group was injected with 0.9% saline (0.2 ml/20 g) by intraperitoneal injection twice a week. After the initial state (0 weeks) and the treatment at the end of 4, 6 and 8 weeks, the mood changes and motor functions of mice were assessed by neurobehavioral tests (open field test, pole climbing test, tail suspension test and elevated plus maze test) . And the number of fecal pellets for 1 h and water content were calculated to assess the functional status of the gastrointestinal tract. Western blotting experiments were performed to detect the expression levels of α-synuclein (α-syn) and tyrosine hydroxylase (TH) in the nigrostriatal region of the mouse brain, the tight junction markers zonula occludens-1 (ZO-1) and Occludin, the inflammatory markers of integrin αM subunit (CD11b) , inducible nitric oxide synthase (iNOS) , high mobility group box 1 (HMGB1) , interleukin-1β (IL-1β) , and the neuronal markers βⅢ-tubulin and α-syn protein in the colon.Immunohistochemical staining was performed to detect the expression levels of colonic tight junction proteins ZO-1 and Occludin. Immunofluorescence staining was performed to detect the expression levels of TH in the substantia nigra region of the midbrain, and the co-localization of colonic intestine neuronal marker (βⅢ-tubulin) and Ser129 α-syn in the colonic. Results: Compared with the initial state (0 weeks) and C-8 group, mice in the P-8 group had significantly higher pole climbing test scores and resting time, and significantly lower total active distance, mean active speed, percentage of open arm entry and 1 h fecal instances (P<0.05) . After poisoning, the 1 h fecal water content of model mice first increased and then decreased, the P-4 and P-6 groups were significantly higher than the simultaneous point control group, and the P-8 groups were significantly lower than the initial state (P<0.05) . Compared with control, P-4 and P-6 groups, the expression levels of ZO-1 and Occludin in the P-8 group were significantly decreased (P<0.05) . Compared with control group, the expression levels of CD11b and IL-1β in the P-4 group were significantly increased (P<0.05) . Compared with control and P-4 group, the expression levels of CD11b, iNOS, HMGB1 and IL-1β in the P-6 and P-8 groups were significantly increased (P<0.05) . Compared with the control and P-4 groups, the expression levels of βⅢ-tubulin in the colon of mice in the P-8 group were significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased (P<0.05) . The expression level of Ser129 α-syn in the colon of model mice was negatively correlated with the expression level of βⅢ-tubulin (r(s)=-0.9149, 95%CI: -0.9771--0.7085, P<0.001) . Ser129 α-syn and βⅢ-tubulin co-localization in the colonic intermuscular plexus region increased gradually with the time of exposure. Compared with the control, P-4 and P-6 groups, the expression level of TH in the nigrostriatal region of the brain was significantly decreased, and the expression levels of α-syn and Ser129 α-syn were significantly increased in the P-8 group (P<0.05) . Correlation analysis showed that the relative expression level of Ser129 α-syn in the nigrostriatal region of the brain was negatively correlated with the expression level of TH in the model mice (r(s)=-0.9716, 95% CI: -0.9925--0.8953, P<0.001) . Conclusion: The PD mouse model is successfully established by PQ, and the intestinal function of the model mice is reduced in a time-dependent manner. And on this basis, it is preliminary determined that the abnormal aggregation of α-syn may be an important substance connecting the brain-gut axis.
Animals
;
Brain-Gut Axis
;
Disease Models, Animal
;
HMGB1 Protein
;
Intestines
;
Mice
;
Mice, Inbred C57BL
;
Occludin
;
Paraquat/toxicity*
;
Parkinson Disease
;
Tubulin
;
Tyrosine 3-Monooxygenase/metabolism*
;
Water

Result Analysis
Print
Save
E-mail