1.Compound Tinglizi Decoction intervenes COPD-associated pulmonary hypertension through regulation of HMGB1-mediated pyroptosis and immune imbalance.
Xin-Cheng WU ; Yu LIU ; Zheng-Ping BAI
China Journal of Chinese Materia Medica 2023;48(11):3055-3065
This paper aimed to investigate the effects of high mobility group box 1(HMGB1)-mediated pulmonary artery smooth muscle cell pyroptosis and immune imbalance on chronic obstructive pulmonary disease-associated pulmonary hypertension(COPD-PH) in rats and the intervening mechanism of Compound Tinglizi Decoction. Ninety rats were randomly divided into a normal group, a model group, low-dose, medium-dose, and high-dose Compound Tinglizi Decoction groups, and a simvastatin group. The rat model of COPD-PH was established by fumigation combined with lipopolysaccharide(LPS) intravascular infusion, which lasted 60 days. Rats in the low, medium, and high-dose Compound Tinglizi Decoction groups were given 4.93, 9.87, and 19.74 g·kg~(-1) Compound Tinglizi Decoction by gavage, respectively. Rats in the simvastatin group were given 1.50 mg·kg~(-1) simvastatin by gavage. After 14 days, the lung function, mean pulmonary artery pressure, and arterial blood gas of rats were analyzed. Lung tissues of rats were collected for hematoxylin-eosin(HE) staining to observe the pathological changes. Real-time fluorescent quantitative polymerase chain reaction(qRT-PCR) was used to determine the expression of related mRNA in lung tissues, Western blot(WB) was used to determine the expression of related proteins in lung tissues, and enzyme linked immunosorbent assay(ELISA) was used to determine the levels of inflammatory factors in the lung tissues of rats. The ultrastructure of lung cells was observed by transmission electron microscope. The forced vital capacity(FVC), forced expiratory volume in 0.3 second(FEV_(0.3)), FEV_(0.3)/FVC, peek expiratory flow(PEF), respiratory dynamic compliance(Cdyn), arterial partial pressure of oxygen(PaO_2), and arterial oxygen saturation(SaO_2) were increased, and resistance of expiration(Re), mean pulmonary arterial pressure(mPAP), right ventricular hypertrophy index(RVHI), and arterial partial pressure of carbon dioxide(PaCO_2) were decreased by Compound Tinglizi Decoction in rats with COPD-PH. Compound Tinglizi Decoction inhibited the protein expression of HMGB1, receptor for advanced glycation end products(RAGE), pro caspase-8, cleaved caspase-8, and gasdermin D(GSDMD) in lung tissues of rats with COPD-PH, as well as the mRNA expression of HMGB1, RAGE, and caspase-8. Pulmonary artery smooth muscle cell pyroptosis was inhibited by Compound Tinglizi Decoction. Interferon-γ(IFN-γ) and interleukin-17(IL-17) were reduced, and interleukin-4(IL-4) and interleukin-10(IL-10) were incresead by Compound Tinglizi Decoction in lung tissues of rats with COPD-PH. In addition, the lesion degree of trachea, alveoli, and pulmonary artery in lung tissues of rats with COPD-PH was improved by Compound Tinglizi Decoction. Compound Tinglizi Decoction had dose-dependent effects. The lung function, pulmonary artery pressure, arterial blood gas, inflammation, trachea, alveoli, and pulmonary artery disease have been improved by Compound Tinglizi Decoction, and its mechanism is related to HMGB1-mediated pulmonary artery smooth muscle cell pyroptosis and helper T cell 1(Th1)/helper T cell 2(Th2), helper T cell 17(Th17)/regulatory T cell(Treg) imbalance.
Animals
;
Rats
;
Caspase 8
;
Pyroptosis
;
HMGB1 Protein/genetics*
;
Hypertension, Pulmonary/etiology*
;
Pulmonary Disease, Chronic Obstructive/genetics*
2.MiR-340 mediates the involvement of high mobility group box 1 in the pathogenesis of liver fibrosis.
Sha Ling LI ; Pan Pan YI ; Ruo Chan CHEN ; Ze Bing HUANG ; Xing Wang HU ; Xue Gong FAN
Chinese Journal of Hepatology 2023;31(1):77-83
Objective: To explore the pathogenic mechanism of the miR-340/high mobility group box 1 (HMGB1) axis in the formation of liver fibrosis. Methods: A rat liver fibrosis model was established by injecting CCl(4) intraperitoneally. miRNAs targeting and validating HMGB1 were selected with gene microarrays after screening the differentially expressed miRNAs in rats with normal and hepatic fibrosis. The effect of miRNA expressional changes on HMGB1 levels was detected by qPCR. Dual luciferase gene reporter assays (LUC) was used to verify the targeting relationship between miR-340 and HMGB1. The proliferative activity of the hepatic stellate cell line HSC-T6 was detected by thiazolyl blue tetrazolium bromide (MTT) assay after co-transfection of miRNA mimics and HMGB1 overexpression vector, and the expression of extracellular matrix (ECM) proteins type I collagen and α-smooth muscle actin (SMA) was detected by western blot. Statistical analysis was performed by analysis of variance and the LSD-t test. Results: Hematoxylin-eosin and Masson staining results showed that the rat model of liver fibrosis was successfully established. Gene microarray analysis and bioinformatics prediction had detected eight miRNAs possibly targeting HMGB1, and animal model validation had detected miR-340. qPCR detection results showed that miR-340 had inhibited the expression of HMGB1, and a luciferase complementation assay suggested that miR-340 had targeted HMGB1. Functional experiments results showed that HMGB1 overexpression had enhanced cell proliferation activity and the expression of type I collagen and α-SMA, while miR-340 mimics had not only inhibited cell proliferation activity and the expression of HMGB1, type I collagen, and α-SMA, but also partially reversed the promoting effect of HMGB1 on cell proliferation and ECM synthesis. Conclusion: miR-340 targets HMGB1 to inhibit the proliferation and ECM deposition in hepatic stellate cells and plays a protective role during the process of liver fibrosis.
Animals
;
Rats
;
Cell Proliferation
;
Collagen Type I/metabolism*
;
Fibrosis
;
Hepatic Stellate Cells
;
HMGB1 Protein/genetics*
;
Liver Cirrhosis/pathology*
;
MicroRNAs/metabolism*
3.Protective effect of Shenfu Injection on rats with chronic heart failure based on HMGB1/TLR4/NF-κB signaling pathway.
Shu-Min HUANG ; Xiao-Qian LIAO ; Xin-Yu FAN ; Zi-Yi WANG ; Si-Yuan HU ; Zhi-Xi HU
China Journal of Chinese Materia Medica 2022;47(20):5556-5563
The study aimed to explore the mechanism and targets of Shenfu Injection in the regulation of inflammatory injury in chronic heart failure rats based on the high mobility group box-1/Toll like receptor 4/nuclear factor kappa-B(HMGB1/TLR4/NF-κB) signaling pathway. The rat model of chronic heart failure was established using isoproterenol. The modeled rats were divided into three groups by random number table: the model group, Shenfu group and glycopyrrolate group, and the normal group was also set. The rats were administrated for 15 consecutive days, and on the following day after the last administration, they were sacrificed for sample collection. The cardiac mass index and left ventricular mass index of the rats in each group were measured, and the echocardiogram was used to analyze the cardiac function indices, and ELISA to test the inflammatory indices in rat serum. The pathological morphology and fibrosis status of rat heart tissues were observed by HE staining and Masson staining, respectively. The content of HMGB1 was determined by immunofluorescence staining. The protein and mRNA expression of HMGB1/TLR4/TLR4 signaling pathway was detected by Western blot and RT-qPCR, respectively. The results showed that the chronic heart failure rat model was successfully prepared. The rats in the model group had reduced cardiac function, increased levels of HMGB1 and inflammatory factors(P<0.05), and elevated protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), with fibrous connective tissue hyperplasia, inflammatory cell infiltration and severe fibrosis. Shenfu Injection improved cardiac function, decreased the levels of HMGB1 and inflammatory factors(P<0.05) and the protein and mRNA expression of HMGB1, TLR4, MyD88, and NF-κB P65 in myocardial tissue(P<0.05), ameliorated interstitial fibrous connective tissue hyperplasia and inflammatory cell infiltration, and reduced fibrosis. In conclusion, Shenfu Injection can reduce inflammatory damage and improve cardiac function in chronic heart failure rats by regulating the HMGB1/TLR4/NF-κB signaling pathway.
Rats
;
Animals
;
NF-kappa B/metabolism*
;
HMGB1 Protein/pharmacology*
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Hyperplasia
;
Rats, Sprague-Dawley
;
Signal Transduction
;
RNA, Messenger
;
Heart Failure/genetics*
;
Fibrosis
4.Long noncoding RNA ZEB1-AS1 aggravates cerebral ischemia/reperfusion injury in rats through the HMGB1/TLR-4 signaling axis.
Jing WANG ; Xue Yi CHEN ; Li SUN ; Xue Mei CHEN ; Hui LI ; Bin Rui XIONG ; Hai Hua WANG
Journal of Southern Medical University 2022;42(8):1134-1142
OBJECTIVE:
To investigate the role of long non-coding RNA ZEB1-AS1 in cerebral ischemia/reperfusion injury (CI/RI).
METHODS:
We detected the temporal changes of ZEB1-AS1 and HMGB1 expression using qPCR and Western blotting in SD rats following CI/RI induced by middle cerebral artery occlusion (MCAO). The rat models of CI/RI were subjected to injections of vectors for ZEB1-AS1 overexpression or knockdown into the lateral ventricle, and the changes in cognitive function, brain water content, blood-brain barrier integrity, and IL-1β and TNF-α levels in the cerebrospinal fluid (CSF) and serum were observed. Neuronal loss and cell apoptosis in the cortex of the rat models were detected by FJC and TUNEL methods, and HMGB1 and TLR-4 expressions were analyzed with Western blotting. We also examined the effects of ZEB1-AS1 knockdown on apoptosis and expressions of HMGB1 and TLR-4 in SH-SY5Y cells with oxygen-glucose deprivation/reoxygenation (OGD/R).
RESULTS:
In CI/RI rats, the expressions of ZEB1-AS1 and HMGB1 in the brain tissue increased progressively with the extension of reperfusion time, reaching the peak levels at 24 h followed by a gradual decline. ZEB1-AS1 overexpression significantly aggravated icognitive impairment and increased brain water content, albumin content in the CSF, and IL-1β and TNF-α levels in the CSF and serum in CI/RI rats (P < 0.05), while ZEB1-AS1 knockdown produced the opposite effects (P < 0.05 or 0.01). ZEB1-AS1 overexpression obviously increased the number of FJC-positive neurons in the cortex and enhanced the expressions of HMGB1 and TLR-4 in the rat models (P < 0.01); ZEB1-AS1 knockdown significantly reduced the number of FJC-positive neurons and lowered HMGB1 and TLR-4 expressions (P < 0.01). In SH-SY5Y cells with OGD/R, ZEB1-AS1 knockdown significantly suppressed cell apoptosis and lowered the expressions of HMGB1 and TLR-4 (P < 0.01).
CONCLUSION
ZEB1-AS1 overexpression aggravates CI/RI in rats through the HMGB1/TLR-4 signaling axis.
Animals
;
Cell Line, Tumor
;
Cell Proliferation/genetics*
;
HMGB1 Protein/metabolism*
;
Humans
;
Infarction, Middle Cerebral Artery
;
Neuroblastoma
;
RNA, Long Noncoding/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Reperfusion Injury
;
Toll-Like Receptor 4/metabolism*
;
Tumor Necrosis Factor-alpha
;
Water
5.Dexmedetomidine alleviates hepatic ischemia-reperfusion injury by regulating MALAT1/miR-126-5p/HMGB1 axis.
Xin-Gang MA ; Ye LIU ; Ming-Xi XUE
Acta Physiologica Sinica 2021;73(2):253-262
The aim of this study was to investigate the effects of dexmedetomidine (Dex) on hepatic ischemia/reperfusion injury (HIRI) and the underlying mechanism. The in vitro HIRI was induced by culturing HL-7702 cells, a human hepatocyte cell line, under 24 h of hypoxia and 12 h of reoxygenation. Quantitative real time PCR (qRT-PCR) and Western blot were performed to detect the expression levels of long non-coding RNA MALAT1, microRNA-126-5p (miR-126-5p) and high mobility group box-1 (HMGB1). Bioinformatics prediction and double luciferase assay were used to verify the targeting relationship between miR-126-5p and MALAT1, HMGB1. Reactive oxygen species (ROS), malondialdehyde (MDA) and ATP levels in culture medium were detected by corresponding kits. The results showed that Dex significantly reduced the levels of ROS and MDA, but increased the level of ATP in HL-7702 cells with HIRI. HIRI up-regulated the expression levels of MALAT1 and HMGB1, and down-regulated the level of miR-126-5p. Dex reversed these effects of HIRI. Furthermore, Dex inhibited HIRI-induced cellular apoptosis, whereas MALAT1 reversed the effect of Dex. This inhibitory effect of Dex could be restored by up-regulation of miR-126-5p. The results suggest that Dex protects hepatocytes from HIRI via regulating MALAT1/miR-126-5p/HMGB1 axis.
Dexmedetomidine/pharmacology*
;
HMGB1 Protein/genetics*
;
Humans
;
MicroRNAs/genetics*
;
RNA, Long Noncoding/genetics*
;
Reperfusion Injury/genetics*
6.Effects of silencing HMGB1 combined with docetaxel chemotherapy on the proliferation and apoptosis of prostate cancer cells and its action mechanism.
National Journal of Andrology 2021;27(10):876-881
Objective:
To investigate the effect of silencing the high-mobility group box-1 protein (HMGB1) combined with docetaxel (DTX) on the proliferation and apoptosis of PCa cells and its possible action mechanism.
METHODS:
The expression of HMGB1 mRNA in different PCa cell lines and normal prostatic epithelial cells was detected by RT-qPCR. The PC-3 cells were transfected with different HMGB1 small interfering RNAs (si-HMGB1, si-HMGB1-2 and si-HMGB1-3), and the silencing effect was detected. The effects of different concentrations of DTX on the proliferation of the PC-3 cells was determined by MTT. Then the PC-3 cells were randomly divided into five groups: control (conventional culture), si-HMGB1-NC (si-HMGB1-NC transfection), si-HMGB1 (si-HMGB1-3 transfection), DTX (20 nmol/L DTX), and si-HMGB1+DTX (si-HMGB1-3+20 nmol/L DTX transfection), followed by measurement of the survival rate of the cells by MTT, their apoptosis rate by flow cytometry, and the expressions of HMGB1, B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax) proteins in different groups by Western blot.
RESULTS:
The expression of HMGB1 mRNA in the PC-3 cells was the highest and the lowest after transfection with si-HMGB1-3. DTX inhibited the proliferation of the PC-3 cells at various concentrations. Compared with the control group, the si-HMGB1 and DTX groups showed significantly decreased A values, cell survival rates and HMGB1 and Bcl-2 expressions, but increased cell apoptosis rates and Bax expressions (P < 0.05). In comparison with the si-HMGB1 and DTX groups, the si-HMGB1+DTX group exhibited a remarkably decreased A value, cell survival rate and Bcl-2 expression, but increased cell apoptosis and Bax expression. The expression of the HMGB1 protein was markedly lower in the si-HMGB1+DTX than in the DTX group (P < 0.05).
CONCLUSIONS
Silencing HMGB1 combined with DTX chemotherapy can inhibit the proliferation and promote the apoptosis of PCa cells, which may be attributed to its regulatory effect on the expressions of the Bcl-2 family-related proteins.、.
Apoptosis
;
Cell Proliferation
;
Docetaxel/pharmacology*
;
HMGB1 Protein/genetics*
;
Humans
;
Male
;
Prostatic Neoplasms/genetics*
7.Expression of high-mobility group box 1 in neonates with sepsis.
Chinese Journal of Contemporary Pediatrics 2019;21(2):131-138
OBJECTIVE:
To study the expression of high-mobility group box 1 (HMGB1) in neonates with sepsis and its role in the pathogenesis of neonatal sepsis.
METHODS:
A total of 62 neonates with sepsis were enrolled as the sepsis group, 66 neonates with local infection were enrolled as the local infection group, and 70 healthy neonates were enrolled as the healthy control group. Serum levels of interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-17 (IL-17), interleukin-23 (IL-23), C-reactive protein (CRP) and procalcitonin (PCT) were measured. The mRNA expression of HMGB1, Toll-like receptor 4 (TLR4) and nuclear factor-kappa B (NF-κB) and the protein expression of TLR4 and NF-κB in peripheral blood mononuclear cells (PBMCs) were also measured. PBMCs from healthy neonates were divided into 4 groups: control, HMGB1 treatment, HMGB1+TAK-242 (a TLR4 inhibitor) treatment and HMGB1+PDTC (an NF-κB inhibitor) treatment, and the mRNA expression of TLR4, NF-κB and IL-8 and the protein expression of TLR4 and NF-κB were measured. PBMCs from healthy neonates were divided into another 3 groups: control, LPS treatment and LPS+glycyrrhizin (an HMGB1 inhibitor) treatment, and the mRNA expression of HMGB1, TLR4, NF-κB and IL-8 and the protein expression of TLR4 and NF-κB were measured.
RESULTS:
Compared with the local infection and healthy control groups, the sepsis group had significantly higher serum levels of IL-6, IL-8, IL-17, IL-23, CRP and PCT (P<0.05), as well as significantly higher mRNA expression of HMGB1, TLR4 and NF-κB and protein expression of TLR4 and NF-κB in PBMCs (P<0.05). HMGB1 significantly induced the mRNA and protein expression of TLR4 and NF-κB in PBMCs (P<0.05). TAK-242 inhibited the mRNA and protein expression of TLR4 and NF-κB and mRNA expression of IL-8 (P<0.05). PDTC inhibited the mRNA and protein expression of NF-κB and the mRNA expression of IL-8 (P<0.05). LPS significantly induced the mRNA expression of HMGB1 and the mRNA and protein expression of TLR4 and NF-κB and then stimulated the mRNA expression of IL-8 (P<0.05). Glycyrrhizin inhibited the mRNA expression of HMGB1 and the mRNA and protein expression of TLR4 and NF-κB and then reduced the mRNA expression of IL-8 (P<0.05).
CONCLUSIONS
HMGB1 plays an important role in the pathogenesis of neonatal sepsis by activating the TLR4/NF-κB signaling pathway and inducing the secretion of inflammatory factors including IL-8. The HMGB1 blocker glycyrrhizin can inhibit activation of the TLR4/NF-κB signaling pathway and the secretion of inflammatory factors.
HMGB1 Protein
;
genetics
;
Humans
;
Infant, Newborn
;
Leukocytes, Mononuclear
;
NF-kappa B
;
Sepsis
;
genetics
;
Signal Transduction
8.Regulation of DNA demethylation of STAT3 promoter in CD4+ T cells from aGVHD patients by HMGB1/GADD45A.
Yajing XU ; Jing YANG ; Yuanyuan ZHANG ; Enyi LIU ; Jie PENG ; Xu CHEN ; Fangping CHEN ; Minyuan PENG
Journal of Central South University(Medical Sciences) 2018;43(9):937-944
To study the molecular mechanism for DNA hypomethylation of STAT3 promoter in CD4+ T cells from acute graft-versus-host disease (aGVHD) patients.
Methods: We collected CD4+ T cells from peripheral blood of 42 patients who underwent allogeneic hematopoietic stem cell transplantation (allo-HSCT) from HLA-identical sibling donors. GADD45A expression level in CD4+ T cells was measured by real-time PCR and Western blot. The binding level between HMGB1 and GADD45A in CD4+ T cells was analyzed by co-immunoprecipitation, while the binding levels of HMGB1/GADD45A with STAT3 promoter were detected by chromatin immunoprecipitation-quantitative real-time PCR (ChIP-qPCR). After overexpression of HMGB1 and knockdown of GADD45A in normal CD4+ T cells, STAT3 expression and DNA methylation were measured by Western blot and bisulfite sequencing PCR, respectively.
Results: GADD45A expression was significantly up-regulated in patients with aGVHD compared with that in the patients without aGVHD. More HMGB1-GADD45A complexes were found in CD4+ T cells from patients with aGVHD compared with that in patients without aGVHD. The bindings of HMGB1/GADD45A with STAT3 promoter were significantly increased, and the binding levels of HMGB1/GADD45A were negatively correlated with STAT3 promoter DNA methylation. The expression of STAT3 was significantly reduced and the DNA methylation of STAT3 promoter was significantly increased in CD4+ T cells with overexpression of HMGB1 and knockdown of GADD45A compared with CD4+ T cells only with overexpression of HMGB1.
Conclusion: The increased expression of HMGB1/GADD45A plays an importent role in STAT3 promoter DNA hypomethylation, thereby promoting STAT3 expression in CD4+ T cells from aGVHD patients.
CD4-Positive T-Lymphocytes
;
Cell Cycle Proteins
;
metabolism
;
DNA Demethylation
;
Gene Expression Regulation
;
genetics
;
Graft vs Host Disease
;
genetics
;
HMGB1 Protein
;
metabolism
;
Hematopoietic Stem Cell Transplantation
;
Humans
;
Nuclear Proteins
;
metabolism
;
Promoter Regions, Genetic
;
genetics
;
STAT3 Transcription Factor
;
genetics
;
metabolism
9.Associations between Single Nucleotide Polymorphisms of High Mobility Group Box 1 Protein and Clinical Outcomes in Korean Sepsis Patients.
Kwangha LEE ; Youjin CHANG ; Kyuyoung SONG ; Yun Young PARK ; Jin Won HUH ; Sang Bum HONG ; Chae Man LIM ; Younsuck KOH
Yonsei Medical Journal 2016;57(1):111-117
PURPOSE: High mobility group box 1 (HMGB1) plays a central role in the pathogenesis of sepsis and multiple organ dysfunction syndromes. We investigated the associations of a single nucleotide polymorphism (SNP; rs1045411) in HMGB1 with various clinical parameters, severity, and prognosis in patients with sepsis, severe sepsis, or septic shock. MATERIALS AND METHODS: We enrolled 212 adult patients followed for 28 days. All patients were genotyped for rs1045411, and the serum levels of HMGB1 and several cytokines were measured. RESULTS: The proportions of patients according to genotype were GG (71.2%), GA (26.4%), and AA (2.4%). Among patients with chronic lung disease comorbidity, patients with a variant A allele had higher positive blood culture rates and higher levels of various cytokines [interleukin (IL)-1beta, IL-6, IL-10, IL-17, and tumor necrosis factor-alpha] than those with the GG genotype. In the analysis of those with diabetes as a comorbidity, patients with a variant A allele had higher blood culture and Gram-negative culture rates than those with GG genotypes; these patients also had a higher levels of IL-17. In the analysis of those with sepsis caused by a respiratory tract infection, patients with a variant A allele had higher levels of IL-10 and IL-17 (all p<0.05). This polymorphism had no significant impact on patient survival. CONCLUSION: The variant A allele of rs1045411 appears to be associated with a more severe inflammatory response than the GG genotype under specific conditions.
Adult
;
Aged
;
Alleles
;
Asian Continental Ancestry Group/genetics
;
China/epidemiology
;
Cytokines/*blood/*genetics
;
Female
;
Genotype
;
HMGB1 Protein/blood/*genetics
;
Humans
;
Interleukin-10/genetics
;
Interleukin-17/genetics
;
Interleukin-6/blood
;
Male
;
Middle Aged
;
Polymorphism, Genetic/*genetics
;
Polymorphism, Single Nucleotide/*genetics
;
Prognosis
;
Republic of Korea
;
Sepsis/immunology/*metabolism/mortality
;
Shock, Septic/immunology/*metabolism/mortality
;
Survival
;
Tumor Necrosis Factor-alpha/genetics
10.Influence of HMGB1/MAPK/m-TOR signaling pathway on cell autophagy and chemotherapy resistance in K562 cells.
Liying LIU ; Fei GAO ; Yanqiong YE ; Zhiheng CHEN ; Yunpeng DAI ; Ping ZHAO ; Guotao GUAN ; Mingyi ZHAO
Journal of Central South University(Medical Sciences) 2016;41(10):1016-1023
To observe the effect of high-mobility group box 1 (HMGB1) on autophagy and chemotherapy resistance in human leukemiacell line (K562) cells, and to explore the underlying mechanisms.
Methods: The K562 cells were cultured in vitro and divided into 6 groups: a chemotherapeutic group, a chemotherapeutic control group, a HMGB1 preconditioning group, a HMGB1 preconditioning control group, a HMGB1 siRNA group and a siRNA control group. The chemotherapeutic group was further divided into a vincristine (VCR) group, an etoposide (VP-16) group, a cytosine arabinoside (Ara-C) group, a adriamycin (ADM) group and a arsenic trioxide (As2O3) group. The cell activity was evaluated by cell counting kit-8. The protein levels of HMGB1, microtubule-associate protein1light chain3 (LC3), AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (m-TOR) were determined by Western blotting. The level of serum HMGB1 was evaluated by enzyme-linked immunosorbent assay (ELISA). The autophagy was examined by monodansylcadaverine staining and observed under transmission electron microscopy.
Results: Compared with the control group, the cell activity was significantly decreased and the level of serum HMGB1 was significantly increased in the chemotherapeutic (VCR, VP-16, Ara-C, ADM and As2O3) groups (all P<0.05). Compared with the control group, the cell activity and the level of serum HMGB1 were significantly increased in the HMGB1 preconditioning group (both P<0.05). Compared with the siRNA control group, the cell activity and the level of serum HMGB1 were significantly decreased in the HMGB1 siRNA group (both P<0.05). Compared with the control group, the expression of LC3-II and the formation of autophagic bodies were increased in the HMGB1 preconditioning group (both P<0.05), the p-AMPK expression was increased and p-mTOR expression was decreased (both P<0.05).
Conclusion: HMGB1 can increase the autophagy and promote chemotherapy resistance through the pathway of AMPK/m-TOR in K562 cells.
AMP-Activated Protein Kinases
;
genetics
;
physiology
;
Arsenic Trioxide
;
Arsenicals
;
Autophagy
;
genetics
;
Cytarabine
;
Doxorubicin
;
Drug Resistance, Neoplasm
;
genetics
;
physiology
;
Etoposide
;
HMGB1 Protein
;
genetics
;
physiology
;
Humans
;
K562 Cells
;
physiology
;
Microtubule-Associated Proteins
;
Oxides
;
RNA, Small Interfering
;
Signal Transduction
;
TOR Serine-Threonine Kinases
;
genetics
;
physiology
;
Vincristine

Result Analysis
Print
Save
E-mail