1.Expression and Clinical Significance of PLCβ4 Gene in Hepatocellular Carcinoma Analyzed Based on TCGA Database and Experimental Validation
Limei WEN ; Yali GUO ; Qiang HOU ; Dongxuan ZHENG ; Wu DAI ; Xiang GAO ; Jianhua YANG ; Junping HU
Cancer Research on Prevention and Treatment 2025;52(6):502-510
		                        		
		                        			
		                        			Objective To analyze the PLCβ4 gene mRNA expression and its clinical significance in hepatocellular carcinoma (HCC) based on TCGA database. Methods Based on the data on 424 clinical samples (including 374 cases of HCC tissues and 50 cases of nontumor liver tissues) in the TCGA database, Kaplan–Meier method, Cox regression analysis, and immune infiltration analysis were performed to evaluate the relationship between PLCβ4 gene and the clinical characteristics and survival prognosis of HCC patients. Correlation analysis between PLCβ4 gene and 24 types of immune cells was applied to investigate the relationship between PLCβ4 gene and immune cell infiltration and mRNA expression level of TP53 gene, a high-frequency mutation gene in HCC. In addition, paraffin sections of highly, moderately, and poorly differentiated tumor tissues and normal liver tissues from HCC patients were collected. The histopathological observation was carried out via HE staining method, and the expression levels of PLCβ4 and Ki-67 proteins in each clinical sample were verified through the immunohistochemical method. Results The expression level of PLCβ4 gene in HCC was significantly higher than that in normal tissues (P<0.01), and all patients in the PLCβ4 high-expression group had a significantly longer overall survival than those in the low-expression group (P<0.05), which suggested that PLCβ4 substantially affected the prognosis of HCC patients. Correlation analysis showed that the expression level of PLCβ4 gene was highly correlated with immune cell infiltration and the expression level of TP53 gene. As verified by clinical sample experiments, HE staining experiments and immunohistochemical results revealed that PLCβ4 gene expression in HCC tissue samples was significantly higher than that in normal tissues (P<0.001), and it was negatively correlated with the degree of differentiation. Conclusion PLCβ4 may serve as an independent prognostic factor in HCC and is expected to be a novel molecular target for HCC treatment.
		                        		
		                        		
		                        		
		                        	
2.Prospective Study of Disease Occurrence Spectrum in Asymptomatic Residents in Areas with High Incidence of Esophageal Cancer: 16-year Observation of 711 Cases in Natural Population
Qide BAO ; Fangzhou DAI ; Xueke ZHAO ; Jingjing WANG ; Xin SONG ; Zongmin FAN ; Yanfang ZHANG ; Zhuo YANG ; Junfang GUO ; Kan ZHONG ; Qiang ZHANG ; Junqing LIU ; Min LIU ; Lidong WANG
Cancer Research on Prevention and Treatment 2025;52(8):656-660
		                        		
		                        			
		                        			Objective To understand the disease spectrum of a natural village in an area with high incidence of esophageal cancer to provide a reference for precise prevention and control. Methods From 2008 to 2024, 711 asymptomatic people over the age of 35 years in a natural village with high incidence of esophageal cancer in China were surveyed, and 171 of them were subjected to gastroscopy, biopsy, and pathological examination. All participants were followed up for a long time, and their disease history was recorded. Results A total of 16 years of follow-up were performed, and 703 people were effectively followed up. In 2008, 171 people underwent gastroscopy, and 160 people had biopsy and pathological results in endoscopic screening. By 2024, 76 people had been diagnosed with malignant tumors of 12 different types, and among these people, 45 had esophageal cancer. Conclusion Esophageal cancer remains a significant cause of morbidity and mortality from malignant tumors in this region. Biopsy and pathological examination should be strengthened during gastroscopy, and follow-ups and regular check-ups should be given high importance to reduce the incidence and mortality rates of esophageal cancer.
		                        		
		                        		
		                        		
		                        	
3.National bloodstream infection bacterial resistance surveillance report (2022) : Gram-negative bacteria
Zhiying LIU ; Yunbo CHEN ; Jinru JI ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(1):42-57
		                        		
		                        			
		                        			Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-negative bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-negative bacteria from blood cultures in member hospitals of national bloodstream infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:During the study period,9 035 strains of Gram-negative bacteria were collected from 51 hospitals,of which 7 895(87.4%)were Enterobacteriaceae and 1 140(12.6%)were non-fermenting bacteria. The top 5 bacterial species were Escherichia coli( n=4 510,49.9%), Klebsiella pneumoniae( n=2 340,25.9%), Pseudomonas aeruginosa( n=534,5.9%), Acinetobacter baumannii complex( n=405,4.5%)and Enterobacter cloacae( n=327,3.6%). The ESBLs-producing rates in Escherichia coli, Klebsiella pneumoniae and Proteus spp. were 47.1%(2 095/4 452),21.0%(427/2 033)and 41.1%(58/141),respectively. The prevalence of carbapenem-resistant Escherichia coli(CREC)and carbapenem-resistant Klebsiella pneumoniae(CRKP)were 1.3%(58/4 510)and 13.1%(307/2 340);62.1%(36/58)and 9.8%(30/307)of CREC and CRKP were resistant to ceftazidime/avibactam combination,respectively. The prevalence of carbapenem-resistant Acinetobacter baumannii(CRAB)complex was 59.5%(241/405),while less than 5% of Acinetobacter baumannii complex was resistant to tigecycline and polymyxin B. The prevalence of carbapenem-resistant Pseudomonas aeruginosa(CRPA)was 18.4%(98/534). There were differences in the composition ratio of Gram-negative bacteria in bloodstream infections and the prevalence of main Gram-negative bacteria resistance among different regions,with statistically significant differences in the prevalence of CRKP and CRPA( χ2=20.489 and 20.252, P<0.001). The prevalence of CREC,CRKP,CRPA,CRAB,ESBLs-producing Escherichia coli and Klebsiella pneumoniae were higher in provinicial hospitals than those in municipal hospitals( χ2=11.953,81.183,10.404,5.915,12.415 and 6.459, P<0.01 or <0.05),while the prevalence of CRPA was higher in economically developed regions(per capita GDP ≥ 92 059 Yuan)than that in economically less-developed regions(per capita GDP <92 059 Yuan)( χ2=6.240, P=0.012). Conclusions:The proportion of Gram-negative bacteria in bloodstream infections shows an increasing trend,and Escherichia coli is ranked in the top,while the trend of CRKP decreases continuously with time. Decreasing trends are noted in ESBLs-producing Escherichia coli and Klebsiella pneumoniae. Low prevalence of carbapenem resistance in Escherichia coli and high prevalence in CRAB complex have been observed. The composition ratio and antibacterial spectrum of bloodstream infections in different regions of China are slightly different,and the proportion of main drug resistant bacteria in provincial hospitals is higher than those in municipal hospitals.
		                        		
		                        		
		                        		
		                        	
4.Efficacy and safety of oliceridine for treatment of moderate to severe pain after surgery with general anesthesia: a prospective, randomized, double-blinded, multicenter, positive-controlled clinical trial
Gong CHEN ; Wen OUYANG ; Ruping DAI ; Xiaoling HU ; Huajing GUO ; Haitao JIANG ; Zhi-Ping WANG ; Xiaoqing CHAI ; Chunhui WANG ; Zhongyuan XIA ; Ailin LUO ; Qiang WANG ; Ruifeng ZENG ; Yanjuan HUANG ; Zhibin ZHAO ; Saiying WANG
Chinese Journal of Anesthesiology 2024;44(2):135-139
		                        		
		                        			
		                        			Objective:To evaluate the efficacy and safety of oliceridine for treatment of moderate to severe pain after surgery with general anesthesia in patients.Methods:The patients with moderate to severe pain (numeric pain rating scale ≥4) after abdominal surgery with general anesthesia from 14 hospitals between July 6, 2021 and November 9, 2021 were included in this study. The patients were assigned to either experiment group or control group using a random number table method. Experiment group received oliceridine, while control group received morphine, and both groups were treated with a loading dose plus patient-controlled analgesia and supplemental doses for 24 h. The primary efficacy endpoint was the drug response rate within 24 h after giving the loading dose. Secondary efficacy endpoints included early (within 1 h after giving the loading dose) drug response rates and use of rescue medication. Safety endpoints encompassed the development of respiratory depression and other adverse reactions during treatment.Results:After randomization, both the full analysis set and safety analysis set comprised 180 cases, with 92 in experiment group and 88 in control group. The per-protocol set included 170 cases, with 86 in experiment group and 84 in control group. There were no statistically significant differences between the two groups in 24-h drug response rates, rescue analgesia rates, respiratory depression, and incidence of other adverse reactions ( P>0.05). The analysis of full analysis set showed that the experiment group had a higher drug response rate at 5-30 min after giving the loading dose compared to control group ( P<0.05). The per-protocol set analysis indicated that experiment group had a higher drug response rate at 5-15 min after giving the loading dose than control group ( P<0.05). Conclusions:When used for treatment of moderate to severe pain after surgery with general anesthesia in patients, oliceridine provides comparable analgesic efficacy to morphine, with a faster onset.
		                        		
		                        		
		                        		
		                        	
5.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
		                        		
		                        			
		                        			Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
		                        		
		                        		
		                        		
		                        	
6.Active monitoring study of central nervous system adverse drug reactions due to commonly used carbapenems
Jing XIAO ; Hai-Yan LI ; Dai-Hong GUO ; Man ZHU ; Ao GAO ; Peng LI ; Li-Qiang CUI
The Chinese Journal of Clinical Pharmacology 2024;40(17):2562-2566
		                        		
		                        			
		                        			Objective To obtain the occurrence and clinical characteristics of central nervous system adverse drug reactions(CNS-ADR)associated with three kinds of carbapenems,and to provide reference for clinical drug safety.Methods Based on adverse drug event active surveillance and assessment system-Ⅱ(ADE-ASAS-Ⅱ),retrospective automated monitoring of inpatients using imipenem,meropenem,and biapenem in a tertiary hospital from January 2022 to December 2022 was conducted.The incidence of carbapenem related CNS-ADR was calculated,and the basic conditions,disease conditions,drug use,occurrence time of ADR and symptoms of patients with CNS-ADR were analyzed by descriptive statistics.Results A total of 2 482 patients with 2 709 times of medication were included in this study,and a total of 93 positive cases of CNS-ADR occurred,with an overall incidence of 3.43%for all three medications,3.98%for imipenem,3.51%for meropenem,and 2.78%for biapenem.The indications for the 93 positive cases of CNS-ADR were mainly pulmonary infections(59.13%)and abdominal infections(25.80%);they occurred mostly within 7 days of the administration of the medication;with a variety of clinical manifestations,with anxiety/irritability being the most common,and epilepsy appearing most frequently in severe cases.Co-administration of proton pump inhibitors and cephalosporins accounted for a greater proportion of positive cases,50.54%of positive cases had a history of surgery,and 69.89%of positive cases were associated with electrolyte disturbances.Conclusion Clinical use of carbapenems should be based on the actual situation of the patient to develop an individualised drug regimen,and special attention should be paid to patients with comorbidities of renal disease,electrolyte disorders,and a history of previous surgery and neurological disorders,in order to reduce the risk of the occurrence of CNS-ADR.
		                        		
		                        		
		                        		
		                        	
7.National bloodstream infection bacterial resistance surveillance report(2022): Gram-positive bacteria
Chaoqun YING ; Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Qing YANG ; Haishen KONG ; Haifeng MAO ; Hui DING ; Pengpeng TIAN ; Jiangqin SONG ; Yongyun LIU ; Jiliang WANG ; Yan JIN ; Yuanyuan DAI ; Yizheng ZHOU ; Yan GENG ; Fenghong CHEN ; Lu WANG ; Yanyan LI ; Dan LIU ; Peng ZHANG ; Junmin CAO ; Xiaoyan LI ; Dijing SONG ; Xinhua QIANG ; Yanhong LI ; Qiuying ZHANG ; Guolin LIAO ; Ying HUANG ; Baohua ZHANG ; Liang GUO ; Aiyun LI ; Haiquan KANG ; Donghong HUANG ; Sijin MAN ; Zhuo LI ; Youdong YIN ; Kunpeng LIANG ; Haixin DONG ; Donghua LIU ; Hongyun XU ; Yinqiao DONG ; Rong XU ; Lin ZHENG ; Shuyan HU ; Jian LI ; Qiang LIU ; Liang LUAN ; Jilu SHEN ; Lixia ZHANG ; Bo QUAN ; Xiaoping YAN ; Xiaoyan QI ; Dengyan QIAO ; Weiping LIU ; Xiusan XIA ; Ling MENG ; Jinhua LIANG ; Ping SHEN ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2024;17(2):99-112
		                        		
		                        			
		                        			Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical Gram-positive bacteria isolates from bloodstream infections in China in 2022.Methods:The clinical isolates of Gram-positive bacteria from blood cultures in member hospitals of National Bloodstream Infection Bacterial Resistant Investigation Collaborative System(BRICS)were collected during January 2022 to December 2022. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical and Laboratory Standards Institute(CLSI). WHONET 5.6 and SPSS 25.0 software were used to analyze the data.Results:A total of 3 163 strains of Gram-positive pathogens were collected from 51 member units,and the top five bacteria were Staphylococcus aureus( n=1 147,36.3%),coagulase-negative Staphylococci( n=928,29.3%), Enterococcus faecalis( n=369,11.7%), Enterococcus faecium( n=296,9.4%)and alpha-hemolyticus Streptococci( n=192,6.1%). The detection rates of methicillin-resistant Staphylococcus aureus(MRSA)and methicillin-resistant coagulase-negative Staphylococci(MRCNS)were 26.4%(303/1 147)and 66.7%(619/928),respectively. No glycopeptide and daptomycin-resistant Staphylococci were detected. The sensitivity rates of Staphylococcus aureus to cefpirome,rifampin,compound sulfamethoxazole,linezolid,minocycline and tigecycline were all >95.0%. Enterococcus faecium was more prevalent than Enterococcus faecalis. The resistance rates of Enterococcus faecium to vancomycin and teicoplanin were both 0.5%(2/369),and no vancomycin-resistant Enterococcus faecium was detected. The detection rate of MRSA in southern China was significantly lower than that in other regions( χ2=14.578, P=0.002),while the detection rate of MRCNS in northern China was significantly higher than that in other regions( χ2=15.195, P=0.002). The detection rates of MRSA and MRCNS in provincial hospitals were higher than those in municipal hospitals( χ2=13.519 and 12.136, P<0.001). The detection rates of MRSA and MRCNS in economically more advanced regions(per capita GDP≥92 059 Yuan in 2022)were higher than those in economically less advanced regions(per capita GDP<92 059 Yuan)( χ2=9.969 and 7.606, P=0.002和0.006). Conclusions:Among the Gram-positive pathogens causing bloodstream infections in China, Staphylococci is the most common while the MRSA incidence decreases continuously with time;the detection rate of Enterococcus faecium exceeds that of Enterococcus faecalis. The overall prevalence of vancomycin-resistant Enterococci is still at a low level. The composition ratio of Gram-positive pathogens and resistant profiles varies slightly across regions of China,with the prevalence of MRSA and MRCNS being more pronounced in provincial hospitals and areas with a per capita GDP≥92 059 yuan.
		                        		
		                        		
		                        		
		                        	
8.A single-center study on the distribution and antibiotic resistance of pathogens causing bloodstream infection in patients with hematological malignancies.
Lin Jing CAI ; Xiao Lei WEI ; Yong Qiang WEI ; Xu Tao GUO ; Xue Jie JIANG ; Yu ZHANG ; Guo pan YU ; Min DAI ; Jie Yu YE ; Hong Sheng ZHOU ; Dan XU ; Fen HUANG ; Zhi Ping FAN ; Na XU ; Peng Cheng SHI ; Li XUAN ; Ru FENG ; Xiao Li LIU ; Jing SUN ; Qi Fa LIU
Chinese Journal of Hematology 2023;44(6):479-483
		                        		
		                        			
		                        			Objective: To study the incidence of bloodstream infections, pathogen distribution, and antibiotic resistance profile in patients with hematological malignancies. Methods: From January 2018 to December 2021, we retrospectively analyzed the clinical characteristics, pathogen distribution, and antibiotic resistance profiles of patients with malignant hematological diseases and bloodstream infections in the Department of Hematology, Nanfang Hospital, Southern Medical University. Results: A total of 582 incidences of bloodstream infections occurred in 22,717 inpatients. From 2018 to 2021, the incidence rates of bloodstream infections were 2.79%, 2.99%, 2.79%, and 2.02%, respectively. Five hundred ninety-nine types of bacteria were recovered from blood cultures, with 487 (81.3%) gram-negative bacteria, such as Klebsiella pneumonia, Escherichia coli, and Pseudomonas aeruginosa. Eighty-one (13.5%) were gram-positive bacteria, primarily Staphylococcus aureus, Staphylococcus epidermidis, and Enterococcus faecium, whereas the remaining 31 (5.2%) were fungi. Enterobacteriaceae resistance to carbapenems, piperacillin/tazobactam, cefoperazone sodium/sulbactam, and tigecycline were 11.0%, 15.3%, 15.4%, and 3.3%, with a descending trend year on year. Non-fermenters tolerated piperacillin/tazobactam, cefoperazone sodium/sulbactam, and quinolones at 29.6%, 13.3%, and 21.7%, respectively. However, only two gram-positive bacteria isolates were shown to be resistant to glycopeptide antibiotics. Conclusions: Bloodstream pathogens in hematological malignancies were broadly dispersed, most of which were gram-negative bacteria. Antibiotic resistance rates vary greatly between species. Our research serves as a valuable resource for the selection of empirical antibiotics.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Bacteremia/epidemiology*
		                        			;
		                        		
		                        			Cefoperazone
		                        			;
		                        		
		                        			Sulbactam
		                        			;
		                        		
		                        			Retrospective Studies
		                        			;
		                        		
		                        			Drug Resistance, Bacterial
		                        			;
		                        		
		                        			Microbial Sensitivity Tests
		                        			;
		                        		
		                        			Hematologic Neoplasms
		                        			;
		                        		
		                        			Sepsis
		                        			;
		                        		
		                        			Anti-Bacterial Agents/pharmacology*
		                        			;
		                        		
		                        			Gram-Negative Bacteria
		                        			;
		                        		
		                        			Gram-Positive Bacteria
		                        			;
		                        		
		                        			Piperacillin, Tazobactam Drug Combination
		                        			;
		                        		
		                        			Escherichia coli
		                        			
		                        		
		                        	
9.Analysis of the clinicopathological characteristics of thymoma patients and the influencing factors for prognosis
Taiji XIE ; Ling GUO ; Ruoyan GONG ; Qianlong TANG ; Run XIANG ; Wei DAI ; Shaohua XIE ; Ke ZHOU ; Tianpeng XIE ; Qiang LI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2023;30(10):1407-1414
		                        		
		                        			
		                        			Objective     To analyze the clinicopathological characteristics of thymoma patients and the influencing factors for prognosis. Methods     Thymoma patients who received treatment in Sichuan Cancer Hospital from March 2015 to March 2021 were collected. Clinical data of the patients were analyzed using Kaplan-Meier and Cox regression analyses. Results     A total of 177 patients were included. There were 89 males and 88 females aged 17-88 (52.3±13.0) years, including 160 surgical patients and 17 non-surgical patients. There were 160 patients survived, 17 died of thymoma, and 5 had recurrence and metastasis. Overall, the 1-year, 3-year and 5-year progression-free survival rates were 94.4%, 88.7%, 88.1%, respectively; the 1-year, 3-year and 5-year overall survival rates were 94.9%, 91.5%, 91.0%, respectively. The Kaplan-Meier analysis showed that World Health Organization classification, clinical symptoms, Masaoka-Koga staging, treatment methods and surgery were statistically associated with progression-free survival; clinical symptoms, age, treatment methods and surgery were statistically associated with overall survival (P<0.05). Patients with younger age (P=0.018), without clinical symptoms (P=0.039), and with surgical treatment (P=0.004) had higher overall survival rates; those patients undergoing surgery had a higher progression-free survival rate (P=0.002). Conclusion     Age, clinical symptoms and surgical treatment are independent factors influencing the prognosis of patients with thymoma.
		                        		
		                        		
		                        		
		                        	
10.BRICS report of 2021: The distribution and antimicrobial resistance profile of clinical bacterial isolates from blood stream infections in China
Yunbo CHEN ; Jinru JI ; Zhiying LIU ; Chaoqun YING ; Qing YANG ; Haishen KONG ; Jiliang WANG ; Hui DING ; Haifeng MAO ; Yizheng ZHOU ; Yan JIN ; Yongyun LIU ; Yan GENG ; Yuanyuan DAI ; Hong LU ; Peng ZHANG ; Ying HUANG ; Donghong HUANG ; Xinhua QIANG ; Jilu SHEN ; Hongyun XU ; Fenghong CHEN ; Guolin LIAO ; Dan LIU ; Haixin DONG ; Jiangqin SONG ; Lu WANG ; Junmin CAO ; Lixia ZHANG ; Yanhong LI ; Dijing SONG ; Zhuo LI ; Youdong YIN ; Donghua LIU ; Liang GUO ; Qiang LIU ; Baohua ZHANG ; Rong XU ; Yinqiao DONG ; Shuyan HU ; Kunpeng LIANG ; Bo QUAN ; Lin ZHENG ; Ling MENG ; Liang LUAN ; Jinhua LIANG ; Weiping LIU ; Xuefei HU ; Pengpeng TIAN ; Xiaoping YAN ; Aiyun LI ; Jian LI ; Xiusan XIA ; Xiaoyan QI ; Dengyan QIAO ; Yonghong XIAO
Chinese Journal of Clinical Infectious Diseases 2023;16(1):33-47
		                        		
		                        			
		                        			Objective:To report the results of national surveillance on the distribution and antimicrobial resistance profile of clinical bacterial isolates from bloodstream infections in China in 2021.Methods:The clinical bacterial strains isolated from blood culture from member hospitals of Blood Bacterial Resistant Investigation Collaborative System (BRICS) were collected during January 2021 to December 2021. Antibiotic susceptibility tests were conducted by agar dilution or broth dilution methods recommended by Clinical Laboratory Standards Institute (CLSI). WHONET 5.6 was used to analyze data.Results:During the study period, 11 013 bacterial strains were collected from 51 hospitals, of which 2 782 (25.3%) were Gram-positive bacteria and 8 231 (74.7%) were Gram-negative bacteria. The top 10 bacterial species were Escherichia coli (37.6%), Klebsiella pneumoniae (18.9%), Staphylococcus aureus (9.8%), coagulase-negative Staphylococci (6.3%), Pseudomonas aeruginosa (3.6%), Enterococcus faecium (3.6%), Acinetobacter baumannii (2.8%), Enterococcus faecalis (2.7%), Enterobacter cloacae (2.5%) and Klebsiella spp (2.1%). The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant coagulase-negative Staphylococcus aureus were 25.3% and 76.8%, respectively. No glycopeptide- and daptomycin-resistant Staphylococci was detected; more than 95.0% of Staphylococcus aureus were sensitive to ceftobiprole. No vancomycin-resistant Enterococci strains were detected. The rates of extended spectrum B-lactamase (ESBL)-producing isolated in Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis were 49.6%, 25.5% and 39.0%, respectively. The prevalence rates of carbapenem-resistance in Escherichia coli and Klebsiella pneumoniae were 2.2% and 15.8%, respectively; 7.9% of carbapenem-resistant Klebsiella pneumoniae was resistant to ceftazidime/avibactam combination. Ceftobiprole demonstrated excellent activity against non-ESBL-producing Escherichia coli and Klebsiella pneumoniae. Aztreonam/avibactam was highly active against carbapenem-resistant Escherichia coli and Klebsiella pneumoniae. The prevalence rate of carbapenem-resistance in Acinetobacter baumannii was 60.0%, while polymyxin and tigecycline showed good activity against Acinetobacter baumannii (5.5% and 4.5%). The prevalence of carbapenem-resistance in Pseudomonas aeruginosa was 18.9%. Conclusions:The BRICS surveillance results in 2021 shows that the main pathogens of blood stream infection in China are gram-negative bacteria, in which Escherichia coli is the most common. The MRSA incidence shows a further decreasing trend in China and the overall prevalence of vancomycin-resistant Enterococci is low. The prevalence of Carbapenem-resistant Klebsiella pneumoniae is still on a high level, but the trend is downwards.
		                        		
		                        		
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail