1.Risk factors of malaria infection and risk prediction model research in in labor export in Langfang City
Xuejun ZHANG ; Kun ZHAO ; Jing ZHAO ; ZHUO WANG ; Qiang GUO ; Jie XIAO ; Juanjuan GUO ; Jinhong PENG
Journal of Public Health and Preventive Medicine 2025;36(1):118-122
Objective To analyze the influencing factors of malaria infection of labor service exported to overseas in Langfang City, in order to establish a visualization tool to assist clinicians in predicting the risk of malaria. Methods A total of 4 774 expatriate employees of the Nibei Pipeline Project of the Pipeline Bureau from October 2021 to August 2023 were taken as the subjects, and the gender, age, overseas residence area and Knowledge of malaria controlscores of the study subjects were investigated by questionnaire survey, and the possible risk factors of malaria were screened by logistic regression model. At the same time, the nomogram prediction model was established, and the subjects were divided into the training group and the validation group at a ratio of 2:1, and the area under the curve (ROC) and the decision curve were plotted to evaluate the prediction ability and practicability of the prediction model in this study. Results Among the 4 774 study subjects, 96 cases of malaria occurred, and the detection rate was 2.01%. Junior school (OR=1.723,95% CI:1.361-2.173), and residence in rural areas(OR=2.091,95%CI:1.760 -3.100)were risk factors (OR>1), while protective measures(OR=0.826,95% CI : 0.781 - 0.901) and high malaria education scores (OR=0.872,95% CI : 0.621 - 0.899)were protective factors.The nomogram prediction model results showed that the area under the curve of the nomogram prediction model in the training group was 0.94 (95% CI : 0.85 - 1.00), while the validation group was 0.93 (95% CI : 0.80 - 1.00). The results of the decision curve showed that when the threshold probability of the population was 0-0.9, the nomogram model was used to predict the risk of malaria occurrence with the highest net income. Conclusion The nomogram prediction model (including gender, education, region, protection and malaria education score) established and validated in this study is of great value for clinicians to screen high-risk patients with malaria.
2.Material basis and action mechanism of drug-containing serum of Modified Erxian Pill inhibiting macrophage pyroptosis
Siyuan LI ; Yuru WANG ; Ye XU ; Di GUO ; Nan NAN ; Yang LIU ; Jie ZHAO ; Huiqin HAO
Chinese Journal of Tissue Engineering Research 2025;29(19):4029-4037
BACKGROUND:Our previous study found that Modified Erxian Pill could alleviate inflammation in collagen-induced arthritis rats,but its mechanism needs to be further verified. OBJECTIVE:To analyze the components absorbed in the blood of Modified Erxian Pill,and observe the effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages. METHODS:(1)Analysis of components absorbed in the blood of Modified Erxian Pill:Ultra-high performance liquid chromatography-high resolution mass spectrometry was used to detect and identify Modified Erxian Pill and its components absorbed in the blood.(2)Effect of the drug-containing serum of Modified Erxian Pill on pyroptosis of J774A.1 macrophages:Molecular docking technology was used to initially verify the sesquiterpenoids and NLRP3 in components absorbed in the blood of Modified Erxian Pill.J774A.1 macrophages were randomly divided into blank control group,lipopolysaccharide+adenosine triphosphate group,and lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill with low(2.5%),medium(5%),and high(10%)dose groups.The release of lactate dehydrogenase in the cell supernatant of each group was detected according to the kit instructions.The levels of interleukin-1β and interleukin-18 in cell supernatant were detected in each group by ELISA.The cell membrane damage was detected by Hoechst/PI staining.The expression levels of NLRP3,Caspase-1,GSDMD,and GSDMD-N protein in the cells of each group were detected by western blot assay. RESULTS AND CONCLUSION:(1)A total of 32 active components of Modified Erxian Pill were identified,and 21 components entered the blood.The main components into blood included a variety of sesquiterpenoids.(2)Molecular docking results showed that 3-O-Acetyl-13-deoxyphomenone,Incensol oxide,Atractylenolide III,Rupestonic acid,and 3,7-Dihydroxy-9,11-eremophiladien-8-one had good binding activity with NLRP3.(3)Compared with the blank control group,lactate dehydrogenase activity and the expression levels of interleukin-1β and interleukin-18 were significantly increased in cell supernatant of lipopolysaccharide+adenosine triphosphate group(P<0.001).Hoechst/PI staining showed that the number of PI-positive cells was significantly increased.After the intervention of lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group,all of them showed different degrees of reduction.(4)Compared with the blank control group,NLRP3,Caspase-1,GSDMD,and GSDMD-N protein expression levels were significantly increased in the lipopolysaccharide+adenosine triphosphate group(P<0.05).Compared with lipopolysaccharide+adenosine triphosphate group,the protein expressions of NLRP3,Caspase-1,GSDMD,and GSDMD-N were significantly decreased in the lipopolysaccharide+adenosine triphosphate+Modified Erxian Pill group(P<0.05),and had a certain dose dependence.These findings verify that the drug-containing serum of Modified Erxian Pill may inhibit the pyroptosis of J774A.1 macrophages by regulating the NLRP3/Caspase-1/GSDMD pathway.
3.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
4.Application of Ferroptosis Regulation in Chronic Atrophic Gastritis Based on Spleen Deficiency and Turbid Toxin
Yuxi GUO ; Xuemei JIA ; Jie WANG ; Yanru CAI ; Pengli DU ; Yao DU ; Diangui LI ; Qian YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):279-285
Chronic atrophic gastritis (CAG), a common digestive system disease, has an unclear pathogenesis. Currently, it is mostly believed to be related to Helicobacter pylori (Hp) infection, immune factors, dietary factors, bile reflux, long-term use of antibiotics and anti-inflammatory drugs, and other factors. Ferroptosis is a regulated cell death mechanism that is iron-dependent and characterized by disruption of iron metabolism and accumulation of lipid peroxides. More and more studies have found that ferroptosis is closely related to the onset of CAG. Professor LI Diangui, a master of traditional Chinese medicine, first proposed the turbid toxin theory, which holds that spleen deficiency and turbid toxin is the main pathogenic mechanism of CAG. Abnormal iron metabolism regulation is a prerequisite for the accumulation of turbid toxin in CAG, and ferroptosis is in accordance with the pathogenic mechanism (spleen deficiency and turbid toxin) of CAG. This article explores the pathological mechanism of spleen deficiency and turbid toxin in CAG from the perspectives of iron metabolism, oxidative stress, and lipid peroxidation, providing theoretical support of traditional Chinese medicine for the modern research on CAG. It enriches the modern scientific connotation of the turbid toxicity theory and provides new ideas and breakthrough points for the clinical treatment of CAG.
5.Application of Ferroptosis Regulation in Chronic Atrophic Gastritis Based on Spleen Deficiency and Turbid Toxin
Yuxi GUO ; Xuemei JIA ; Jie WANG ; Yanru CAI ; Pengli DU ; Yao DU ; Diangui LI ; Qian YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):279-285
Chronic atrophic gastritis (CAG), a common digestive system disease, has an unclear pathogenesis. Currently, it is mostly believed to be related to Helicobacter pylori (Hp) infection, immune factors, dietary factors, bile reflux, long-term use of antibiotics and anti-inflammatory drugs, and other factors. Ferroptosis is a regulated cell death mechanism that is iron-dependent and characterized by disruption of iron metabolism and accumulation of lipid peroxides. More and more studies have found that ferroptosis is closely related to the onset of CAG. Professor LI Diangui, a master of traditional Chinese medicine, first proposed the turbid toxin theory, which holds that spleen deficiency and turbid toxin is the main pathogenic mechanism of CAG. Abnormal iron metabolism regulation is a prerequisite for the accumulation of turbid toxin in CAG, and ferroptosis is in accordance with the pathogenic mechanism (spleen deficiency and turbid toxin) of CAG. This article explores the pathological mechanism of spleen deficiency and turbid toxin in CAG from the perspectives of iron metabolism, oxidative stress, and lipid peroxidation, providing theoretical support of traditional Chinese medicine for the modern research on CAG. It enriches the modern scientific connotation of the turbid toxicity theory and provides new ideas and breakthrough points for the clinical treatment of CAG.
6.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
7.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
8.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
9.Application of Medicinal and Edible Materials in Proactive Health and Technological Responses to Population Aging: A Review
Cuiying QIN ; Zuchang GUO ; Jie ZHANG ; Haiyan LI ; Jiayi WANG ; Qiuyan GUO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):258-267
In the strategic context of "healthy China", the concept of "medicine and food homology", rooted in the culture of traditional Chinese medicine (TCM), has received unprecedented attention. In response to population aging in China, the health of the elderly has become the focus of public health attention, and proactive health is the key to healthy aging. From the perspective of the application of medicinal and edible materials in proactive health and technological responses to population aging for the first time, this paper firstly provided a systematic overview of medicinal and edible materials and the policies related to proactive health. Second, it summarized the situation of modern technology that accelerates the research and development of medicinal and edible products, as well as the current situation of various modern biotechnologies that reveal the mechanism of action of medicinal and edible materials. Third, it discussed the application scenarios of medicinal and edible materials in proactive health and technological responses to population aging, as well as the future research and development of medicinal and edible materials. By exploring in depth the unique value and importance of medicinal and edible materials, the paper lays a theoretical foundation for improving the health care capabilities of TCM and contributes new strategies derived from TCM to healthy aging.
10.Effect of Xianglian Huazhuo Prescription on Hedgehog Signaling Pathway in Rats with Chronic Atrophic Gastritis
Jinye ZHOU ; Haofeng ZHANG ; Ziwei LIU ; Yican WANG ; Yanru CAI ; Yuxi GUO ; Jie WANG ; Zheng ZHI ; Qian YANG ; Bolin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(18):41-47
ObjectiveTo explore the therapeutic effect and mechanism of Xianglian Huazhuo prescription on chronic atrophic gastritis (CAG) in rats based on the Hedgehog signaling pathway. MethodsThe CAG rat model was established by sodium salicylate, N-methyl-N′-nitro-N-nitroguanidine (MNNG), and irregular feeding. The successfully modeled rats were randomly divided into a model group (180 mg·L-1), a moradan group (1.4 g·kg-1), and Xianglian Huazhuo Prescription groups with high, medium, and low doses (36, 9, 18 g·kg-1), followed by drug intervention. Hematoxylin-eosin (HE) staining was used to observe morphological changes in the gastric mucosa. Transmission electron microscopy was used to observe the ultrastructure of gastric mucosa cells. Real-time quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of Sonic Hedgehog (Shh), Patched 1 (Ptch1), and Glioma-associated oncogene homolog 1 (Gli1). Western blot was used to detect the protein expression levels of Shh, Ptch1, and Gli1 in the gastric mucosa. Immunohistochemistry was used to observe the protein expression of the epithelial marker E-cadherin. ResultsCompared with the normal group, the CAG model group showed a reduction in gastric mucosal intrinsic glands and infiltration of inflammatory cells. The ultrastructure of gastric mucosal cells showed nuclear pyknosis, fewer mitochondria, and abnormal mitochondrial structure. The mRNA and protein expression of Shh, Ptch1, and Gli1 in the gastric mucosa were significantly decreased (P<0.05), and E-cadherin protein expression was decreased. Compared with the model group, the intervention groups showed varying degrees of improvement in histopathological morphology and cellular ultrastructure. The mRNA and protein expression of Shh, Ptch1, Gli1, and E-cadherin increased to varying degrees. Xianglian Huazhuo Prescription upregulated the expression of key Hedgehog pathway factors and E-cadherin at both the mRNA and protein levels (P<0.05). ConclusionXianglian Huazhuo prescription has a therapeutic effect on CAG in rats, and its mechanism may be related to activation of the Hedgehog signaling pathway and inhibition of epithelial-mesenchymal transition (EMT).


Result Analysis
Print
Save
E-mail