1.Screening key genes of PANoptosis in hepatic ischemia-reperfusion injury based on bioinformatics
Lirong ZHU ; Qian GUO ; Jie YANG ; Qiuwen ZHANG ; Guining HE ; Yanqing YU ; Ning WEN ; Jianhui DONG ; Haibin LI ; Xuyong SUN
Organ Transplantation 2025;16(1):106-113
Objective To explore the relationship between PANoptosis and hepatic ischemia-reperfusion injury (HIRI), and to screen the key genes of PANoptosis in HIRI. Methods PANoptosis-related differentially expressed genes (PDG) were obtained through the Gene Expression Omnibus database and GeneCards database. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the biological pathways related to PDG. A protein-protein interaction network was constructed. Key genes were selected, and their diagnostic value was assessed and validated in the HIRI mice. Immune cell infiltration analysis was performed based on the cell-type identification by estimating relative subsets of RNA transcripts. Results A total of 16 PDG were identified. GO analysis showed that PDG were closely related to cellular metabolism. KEGG analysis indicated that PDG were mainly enriched in cellular death pathways such as apoptosis and immune-related signaling pathways such as the tumor necrosis factor signaling pathway. GSEA results showed that key genes were mainly enriched in immune-related signaling pathways such as the mitogen-activated protein kinase (MAPK) signaling pathway. Two key genes, DFFB and TNFSF10, were identified with high accuracy in diagnosing HIRI, with areas under the curve of 0.964 and 1.000, respectively. Immune infiltration analysis showed that the control group had more infiltration of resting natural killer cells, M2 macrophages, etc., while the HIRI group had more infiltration of M0 macrophages, neutrophils, and naive B cells. Real-time quantitative polymerase chain reaction results showed that compared with the Sham group, the relative expression of DFFB messenger RNA in liver tissue of HIRI group mice increased, and the relative expression of TNFSF10 messenger RNA decreased. Cibersort analysis showed that the infiltration abundance of naive B cells was positively correlated with DFFB expression (r=0.70, P=0.035), and the infiltration abundance of M2 macrophages was positively correlated with TNFSF10 expression (r=0.68, P=0.045). Conclusions PANoptosis-related genes DFFB and TNFSF10 may be potential biomarkers and therapeutic targets for HIRI.
2.Role of SWI/SNF Chromatin Remodeling Complex in Tumor Drug Resistance
Gui-Zhen ZHU ; Qiao YE ; Yuan LUO ; Jie PENG ; Lu WANG ; Zhao-Ting YANG ; Feng-Sen DUAN ; Bing-Qian GUO ; Zhu-Song MEI ; Guang-Yun WANG
Progress in Biochemistry and Biophysics 2025;52(1):20-31
Tumor drug resistance is an important problem in the failure of chemotherapy and targeted drug therapy, which is a complex process involving chromatin remodeling. SWI/SNF is one of the most studied ATP-dependent chromatin remodeling complexes in tumorigenesis, which plays an important role in the coordination of chromatin structural stability, gene expression, and post-translation modification. However, its mechanism in tumor drug resistance has not been systematically combed. SWI/SNF can be divided into 3 types according to its subunit composition: BAF, PBAF, and ncBAF. These 3 subtypes all contain two mutually exclusive ATPase catalytic subunits (SMARCA2 or SMARCA4), core subunits (SMARCC1 and SMARCD1), and regulatory subunits (ARID1A, PBRM1, and ACTB, etc.), which can control gene expression by regulating chromatin structure. The change of SWI/SNF complex subunits is one of the important factors of tumor drug resistance and progress. SMARCA4 and ARID1A are the most widely studied subunits in tumor drug resistance. Low expression of SMARCA4 can lead to the deletion of the transcription inhibitor of the BCL2L1 gene in mantle cell lymphoma, which will result in transcription up-regulation and significant resistance to the combination therapy of ibrutinib and venetoclax. Low expression of SMARCA4 and high expression of SMARCA2 can activate the FGFR1-pERK1/2 signaling pathway in ovarian high-grade serous carcinoma cells, which induces the overexpression of anti-apoptosis gene BCL2 and results in carboplatin resistance. SMARCA4 deletion can up-regulate epithelial-mesenchymal transition (EMT) by activating YAP1 gene expression in triple-negative breast cancer. It can also reduce the expression of Ca2+ channel IP3R3 in ovarian and lung cancer, resulting in the transfer of Ca2+ needed to induce apoptosis from endoplasmic reticulum to mitochondria damage. Thus, these two tumors are resistant to cisplatin. It has been found that verteporfin can overcome the drug resistance induced by SMARCA4 deletion. However, this inhibitor has not been applied in clinical practice. Therefore, it is a promising research direction to develop SWI/SNF ATPase targeted drugs with high oral bioavailability to treat patients with tumor resistance induced by low expression or deletion of SMARCA4. ARID1A deletion can activate the expression of ANXA1 protein in HER2+ breast cancer cells or down-regulate the expression of progesterone receptor B protein in endometrial cancer cells. The drug resistance of these two tumor cells to trastuzumab or progesterone is induced by activating AKT pathway. ARID1A deletion in ovarian cancer can increase the expression of MRP2 protein and make it resistant to carboplatin and paclitaxel. ARID1A deletion also can up-regulate the phosphorylation levels of EGFR, ErbB2, and RAF1 oncogene proteins.The ErbB and VEGF pathway are activated and EMT is increased. As a result, lung adenocarcinoma is resistant to epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). Although great progress has been made in the research on the mechanism of SWI/SNF complex inducing tumor drug resistance, most of the research is still at the protein level. It is necessary to comprehensively and deeply explore the detailed mechanism of drug resistance from gene, transcription, protein, and metabolite levels by using multi-omics techniques, which can provide sufficient theoretical basis for the diagnosis and treatment of poor tumor prognosis caused by mutation or abnormal expression of SWI/SNF subunits in clinical practice.
3.The introduction and inspiration from US FDA guidance: bacterial risk control strategies for blood collection establishments and transfusion services to enhance the safety and availability of platelets for transfusion
Ningjie ZHANG ; Yuanqing YANG ; Yuanpei ZHU ; Yongjun WANG ; Yongjian GUO
Chinese Journal of Blood Transfusion 2025;38(1):142-148
Room temperature stored platelets are associated with a higher risk of sepsis and related fatality. The risk of bacterial contamination of platelets is a leading risk of infection from blood transfusion. U.S. Food and Drug Administration recently issued a guidance on bacterial risk control strategies for blood collection establishments and transfusion services to enhance the safety and availability of platelets for transfusion. The prevention and control strategies in the guidance would be informative and instructive for further development of risk control strategies of platelet bacterial contamination in China.
4.Effect of Wenshen Tongluo Zhitong formula on mouse H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system
Shijie ZHOU ; Muzhe LI ; Li YUN ; Tianchi ZHANG ; Yuanyuan NIU ; Yihua ZHU ; Qinfeng ZHOU ; Yang GUO ; Yong MA ; Lining WANG
Chinese Journal of Tissue Engineering Research 2025;29(1):8-15
BACKGROUND:Bone relies on the close connection between blood vessels and bone cells to maintain its integrity.Bones are in a physiologically hypoxic environment.Therefore,the study of angiogenesis and osteogenesis in hypoxic environment is closer to the microenvironment in vivo. OBJECTIVE:To explore the influence of Wenshen Tongluo Zhitong(WSTLZT)formula on H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell co-culture system in hypoxia environment and its related mechanism. METHODS:Enzyme digestion method and flow sorting technique were used to isolate and identify H-type bone microvascular endothelial cells.Mouse bone marrow mesenchymal stem cells were isolated and obtained by bone marrow adhesion method.H-type bone microvascular endothelial cell/bone marrow mesenchymal stem cell hypoxic co-culture system was established using Transwell chamber and anoxic culture workstation.WSTLZT formula powder was used to intervene in each group at a mass concentration of 50 and 100 μg/mL.The angiogenic function of H-type bone microvascular endothelial cells in the co-culture system was evaluated by scratch migration test and tube formation test.The osteogenic differentiation ability of bone marrow mesenchymal stem cells in the co-cultured system was evaluated by alkaline phosphatase staining and alizarin red staining.The protein and mRNA expression changes of PDGF/PI3K/AKT signal axis related molecules in H-type bone microvascular endothelial cells in the co-cultured system were detected by Western Blotting and q-PCR,respectively. RESULTS AND CONCLUSION:(1)Compared with the normal oxygen group,the scratch mobility and new blood vessel length of H-type bone microvascular endothelial cells were significantly higher(P<0.05);the osteogenic differentiation capacity of bone marrow mesenchymal stem cells was higher(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular protein and mRNA increased(P<0.05)in the hypoxia group.(2)Compared with the hypoxia group,scratch mobility and new blood vessel length were significantly increased in the H-type bone microvascular endothelial cells(P<0.05);bone marrow mesenchymal stem cells had stronger osteogenic function(P<0.05);the expression of PDGF/PI3K/AKT axis-related molecular proteins and mRNA further increased(P<0.05)after treatment with different dose concentrations of WSTLZT formula.These findings conclude that H-type angiogenesis and osteogenesis under hypoxia may be related to the PDGF/PI3K/AKT signaling axis,and WSTLZT formula may promote H-type vasculo-dependent bone formation by activating the PDGF/PI3K/AKT signaling axis,thereby preventing and treating osteoporosis.
5.Correlation between bedtime screen use behavior and sleep health among fourth and fifth grade primary school students
ZHU Guiyin, ZHU Fan, QI Tiantian, GUO Shihao, YANG Shuang, MA Yinghua
Chinese Journal of School Health 2025;46(4):548-551
Objective:
To investigate the association between bedtime screen use and sleep health among fourth and fifthgrade primary school students, so as to provide evidence to support interventions for improving sleep quality.
Methods:
From April to June 2024, a survey was conducted among 4 232 fourth and fifthgrade students from nine primary schools in a district of Beijing. A selfdesigned questionnaire assessed bedtime screen use behavior and sleep health indicators. Generalized linear models and Logistic regression were used to analyze the associations.
Results:
Among the surveyed students, 28.3% reported bedtime screen use. Mean sleep duration every day was (9.31±0.90) hours on school days and (10.08±1.36) hours on weekends. Compared to nonusers, students with bedtime screen use exhibited every day: later bedtimes on school days (10.18 min delay, 95%CI=6.88-13.47) and weekends (22.09 min delay, 95%CI=17.33-26.85) (P<0.05); later weekend wake times (7.97 min delay, 95%CI=1.78-14.16, P<0.05); reduced sleep duration on school days (-9.82 min, 95%CI=-13.62 to -6.03) and weekends (-14.12 min, 95%CI=-20.24 to -8.00) (P<0.05); greater weekend-school day bedtime discrepancy (β=1.15, 95%CI=1.08-1.23, P<0.01). Additionally, they had lower odds of falling asleep within 20 minutes (OR=0.62, 95%CI=0.54-0.72), daytime alertness (OR=0.66, 95%CI=0.56-0.77), and subjective sleep satisfaction (OR=0.57, 95%CI=0.49-0.66)(P<0.01).
Conclusions
Bedtime screen use is associated with adverse effects on multiple dimensions of sleep health in primary school students. Reducing screen exposure before bed may help improve their sleep quality.
6.Preliminary development of Health Literacy Evaluation Scale for Chinese High School Students
GUO Shihao, ZHU Fan, ZHU Guiyin, QI Tiantian, YANG Shuang, HU Bin, WU Huiyun, JIANG He, MA Yinghua
Chinese Journal of School Health 2025;46(5):676-680
Objective:
To develop a health literacy evaluation scale for Chinese high school students, providing a tool for dynamic monitoring of health literacy among high school students and evaluating the effectiveness of health school construction.
Methods:
Through theoretical research, an evaluation index system for health literacy of Chinese high school students was constructed. Two rounds of Delphi expert consultations were conducted to quantitatively screen the items, and the item pool was revised based on expert opinions to compile the health literacy evaluation scale for Chinese students. Two focus group interviews were held to collect suggestions from health educators, high school teachers, and high school students regarding optimized scale length, question types, difficulty and wording of the scale. The scale was revised accordingly. A pilot survey was conducted in Beijing and Tianjin in November 2024, and the reliability and validity of the scale were evaluated based on the pilot survey data.
Results:
The response rate in both rounds of Delphi expert consultations was over 80%, and the expert authority coefficient was over 0.70. The expert opinions were highly concentrated, and the dispersion was small. The revised item pool based on expert opinions contained 39 items. The revised scale based on the suggestions and opinions collected from the focus group interviews had a moderate number of questions and difficulty level. The pilot survey obtained 800 valid responses, with the response rate of 89.39%. The Cronbach α coefficient of the scale was 0.911, χ 2/df =3.321, the root mean square error of approximation was 0.054, the adjusted goodness-of-fit index was 0.991 , and the factor loadings of some items were less than 0.40.
Conclusion
The health literacy evaluation scale for Chinese high school students demonstrates scientific rigor and practical applicability, with good internal consistency and structural validity.
7.Regulation of Immune Function by Exercise-induced Metabolic Remodeling
Hui-Guo WANG ; Gao-Yuan YANG ; Xian-Yan XIE ; Yu WANG ; Zi-Yan LI ; Lin ZHU
Progress in Biochemistry and Biophysics 2025;52(6):1574-1586
Exercise-induced metabolic remodeling is a fundamental adaptive process whereby the body reorganizes systemic and cellular metabolism to meet the dynamic energy demands posed by physical activity. Emerging evidence reveals that such remodeling not only enhances energy homeostasis but also profoundly influences immune function through complex molecular interactions involving glucose, lipid, and protein metabolism. This review presents an in-depth synthesis of recent advances, elucidating how exercise modulates immune regulation via metabolic reprogramming, highlighting key molecular mechanisms, immune-metabolic signaling axes, and the authors’ academic perspective on the integrated “exercise-metabolism-immunity” network. In the domain of glucose metabolism, regular exercise improves insulin sensitivity and reduces hyperglycemia, thereby attenuating glucose toxicity-induced immune dysfunction. It suppresses the formation of advanced glycation end-products (AGEs) and interrupts the AGEs-RAGE-inflammation positive feedback loop in innate and adaptive immune cells. Importantly, exercise-induced lactate, traditionally viewed as a metabolic byproduct, is now recognized as an active immunomodulatory molecule. At high concentrations, lactate can suppress immune function through pH-mediated effects and GPR81 receptor activation. At physiological levels, it supports regulatory T cell survival, promotes macrophage M2 polarization, and modulates gene expression via histone lactylation. Additionally, key metabolic regulators such as AMPK and mTOR coordinate immune cell energy balance and phenotype; exercise activates the AMPK-mTOR axis to favor anti-inflammatory immune cell profiles. Simultaneously, hypoxia-inducible factor-1α (HIF-1α) is transiently activated during exercise, driving glycolytic reprogramming in T cells and macrophages, and shaping the immune landscape. In lipid metabolism, exercise alleviates adipose tissue inflammation by reducing fat mass and reshaping the immune microenvironment. It promotes the polarization of adipose tissue macrophages from a pro-inflammatory M1 phenotype to an anti-inflammatory M2 phenotype. Moreover, exercise alters the secretion profile of adipokines—raising adiponectin levels while reducing leptin and resistin—thereby influencing systemic immune balance. At the circulatory level, exercise improves lipid profiles by lowering pro-inflammatory free fatty acids (particularly saturated fatty acids) and triglycerides, while enhancing high-density lipoprotein (HDL) function, which has immunoregulatory properties such as endotoxin neutralization and macrophage cholesterol efflux. Regarding protein metabolism, exercise triggers the expression of heat shock proteins (HSPs) that act as intracellular chaperones and extracellular immune signals. Exercise also promotes the secretion of myokines (e.g., IL-6, IL-15, irisin, FGF21) from skeletal muscle, which modulate immune responses, facilitate T cell and macrophage function, and support immunological memory. Furthermore, exercise reshapes amino acid metabolism, particularly of glutamine, arginine, and branched-chain amino acids (BCAAs), thereby influencing immune cell proliferation, biosynthesis, and signaling. Leucine-mTORC1 signaling plays a key role in T cell fate, while arginine metabolism governs macrophage polarization and T cell activation. In summary, this review underscores the complex, bidirectional relationship between exercise and immune function, orchestrated through metabolic remodeling. Future research should focus on causative links among specific metabolites, signaling pathways, and immune phenotypes, as well as explore the epigenetic consequences of exercise-induced metabolic shifts. This integrated perspective advances understanding of exercise as a non-pharmacological intervention for immune regulation and offers theoretical foundations for individualized exercise prescriptions in health and disease contexts.
8.Production of GTKO pigs and kidney xenotransplantation from pigs to rhesus macaques
Yan WANG ; Yue CHANG ; Chang YANG ; Taiyun WEI ; Xiaoying HUO ; Bowei CHEN ; Jiaoxiang WANG ; Heng ZHAO ; Jianxiong GUO ; Hongfang ZHAO ; Xiong ZHANG ; Feiyan ZHU ; Wenmin CHENG ; Hongye ZHAO ; Kaixiang XU ; Ameen Jamal MUHAMMAD ; Zhendi WANG ; Hongjiang WEI
Organ Transplantation 2025;16(4):526-537
Objective To explore the construction of α-1,3-galactosyltransferase (GGTA1) gene-knockout (GTKO) Diannan miniature pigs and the kidney xenotransplantation from pigs to rhesus macaques, and to assess the effectiveness of GTKO pigs. Methods The GTKO Diannan miniature pigs were constructed using the CRISPR/Cas9 gene-editing system and somatic cell cloning technology. The phenotype of GTKO pigs was verified through polymerase chain reaction, Sanger sequencing and immunofluorescence staining. Flow cytometry was used to detect antigen-antibody (IgM) binding and complement-dependent cytotoxicity. Kidney xenotransplantation was performed from GTKO pigs to rhesus macaques. The humoral immunity, cellular immunity, coagulation and physiological indicators of the recipient monkeys were monitored. The function and pathological changes of the transplanted kidneys were analyzed using ultrasonography, hematoxylin-eosin staining, immunohistochemical staining and immunofluorescence staining. Results Single-guide RNA (sgRNA) targeting exon 4 of the GGTA1 gene in Diannan miniature pigs was designed. The pGL3-GGTA1-sgRNA1-GFP vector was transfected into fetal fibroblasts of Diannan miniature pigs. After puromycin selection, two cell clones, C59# and C89#, were identified as GGTA1 gene-knockout clones. These clones were expanded to form cell lines, which were used as donor cells for somatic cell nuclear transfer. The reconstructed embryos were transferred into the oviducts of trihybrid surrogate sows, resulting in 13 fetal pigs. Among them, fetuses F04 and F11 exhibited biallelic mutations in the GGTA1 gene, and F04 had a normal karyotype. Using this GTKO fetal pig for recloning and transferring the reconstructed embryos into the oviducts of trihybrid surrogate sows, seven surviving piglets were obtained, all of which did not express α-Gal epitope. The binding of IgM from the serum of rhesus monkey 20# to GTKO pig PBMC was reduced, and the survival rate of GTKO pig PBMC in the complement-dependent cytotoxicity assay was higher than that of wild-type pig. GTKO pig kidneys were harvested and perfused until completely white. After the left kidney of the recipient monkey was removed, the pig kidney was heterotopically transplanted. Following vascular anastomosis and blood flow restoration, the pig kidney rapidly turned pink without hyperacute rejection (HAR). Urine appeared in the ureter 6 minutes later, indicating successful kidney transplantation. The right kidney of the recipient was then removed. Seven days after transplantation, the transplanted kidney had good blood flow, the recipient monkey's serum creatinine level was stable, and serum potassium and cystatin C levels were effectively controlled, although they increased 10 days after transplantation. Seven days after transplantation, the levels of white blood cells, lymphocytes, monocytes and eosinophils in the recipient monkey increased, while platelet count and fibrinogen levels decreased. The activated partial thromboplastin time, thrombin time and prothrombin time remained relatively stable but later showed an upward trend. The recipient monkey survived for 10 days. At autopsy, the transplanted kidney was found to be congested, swollen and necrotic, with a small amount of IgG deposition in the renal tissue, and a large amount of IgM, complement C3c and C4d deposition, as well as CD68+ macrophage infiltration. Conclusions The kidneys of GTKO Diannan miniature pigs may maintain normal renal function for a certain period in rhesus macaques and effectively overcome HAR, confirming the effectiveness of GTKO pigs for xenotransplantation.
9.Preliminary development with reliability and validity testing of health literacy assessment scale for junior high school students
QI Tiantian, ZHU Fan, ZHU Guiyin, GUO Shihao, YANG Shuang, WU Huiyun, HU Bin, JIANG He, MA Yinghua
Chinese Journal of School Health 2025;46(6):816-820
Objective:
To develop and validate a health literacy assessment scale for junior high school students, providing an effective tool for evaluating and monitoring health literacy among Chinese adolescents.
Methods:
Based on school health education policy documents, a health literacy assessment framework was constructed, comprising five horizontal and four vertical dimensions. From May to June and August to September in 2024, the framework was refined through Delphi expert consultations and focus group discussions, leading to the development of the Health Literacy Assessment Scale for Junior High School Students. In September 2024, a convenience sample of 625 students from three junior high schools in Beijing and Tianjin completed the questionnaire. Item analysis, reliability, and validity tests were conducted to evaluate the scale.
Results:
The recovery rate for two rounds of expert consultation questionnaires was 100%. The expert authority coefficients ( Cr ) were 0.86 and 0.87 respectively (both >0.70), with Kendall W values of 0.34 and 0.27 ( P <0.05). The focus group discussions followed a rigorous structure, and after multiple rounds of item screening and revision, the version 3.0 of the junior high school students health literacy assessment scale was developed, comprising 57 items. Three items that failed to meet the comprehensive screening criteria were preliminarily removed, and the final scale contained 54 items. The scale demonstrated excellent reliability, with an overall Cronbach s α coefficient of 0.92 and split half reliability of 0.93. Confirmatory factor analysis [ χ 2/df =2.094, root mean square error of approximation ( RMSEA )=0.042, comparative fit index ( CFI )=0.911, Tucker Lewis index ( TLI )=0.907] indicated good model fit indices.
Conclusions
The preliminary development of the health literacy assessment scale for junior high school students follows a rigorous item screening process with well designed dimensions, demonstrating good reliability and validity, thus serving as an appropriate evaluation tool for adolescent health literacy.
10.Principles of managing wards for patients with internal radionuclide contamination
Fan BAI ; Chao YANG ; Lei ZHU ; Minghao LIU ; Danjie LIU ; Xiaoxin LIU ; Shanshan GUO ; Jianan WANG
Chinese Journal of Radiological Health 2025;34(3):444-449
Based on current national policies, regulations, standards, relevant literature, and departmental experience regarding the protection against radionuclides in China, this study provides a brief overview of key issues in the management of hospital wards for patients with internal radionuclide contamination. The discussion covers the detection of internal contamination, general requirements for internal radionuclide contamination wards, and inpatient management. In addition, the study explores in depth the daily responsibilities, protective measures, and management protocols for both healthcare staff and patients within such wards. This article summarizes a framework for the construction of internal radionuclide contamination wards, along with specific plans and detailed role-based guidelines. These results provide a reference for the management of hospital wards for patients with internal radionuclide contamination.


Result Analysis
Print
Save
E-mail