1.Nucleic Acid-driven Protein Degradation: Frontiers of Lysosomal Targeted Degradation Technology
Han YIN ; Yu LI ; Yu-Chuan FAN ; Shuai GUO ; Yuan-Yu HUANG ; Yong LI ; Yu-Hua WENG
Progress in Biochemistry and Biophysics 2025;52(1):5-19
Distinct from the complementary inhibition mechanism through binding to the target with three-dimensional conformation of small molecule inhibitors, targeted protein degradation technology takes tremendous advantage of endogenous protein degradation pathway inside cells to degrade plenty of “undruggable” target proteins, which provides a novel route for the treatment of many serious diseases, mainly including proteolysis-targeting chimeras, lysosome-targeting chimeras, autophagy-targeting chimeras, antibody-based proteolysis-targeting chimeras, etc. Unlike proteolysis-targeting chimeras first found in 2001, which rely on ubiquitin-proteasome system to mainly degrade intracellular proteins of interest, lysosome-targeting chimeras identified in 2020, which was act as the fastly developing technology, utilize cellular lysosomal pathway through endocytosis mediated by lysosome-targeting receptor to degrade both extracellular and membrane proteins. As an emerging biomedical technology, nucleic acid-driven lysosome-targeting chimeras utilize nucleic acids as certain components of chimera molecule to replace with ligand to lysosome-targeting receptor or protein of interest, exhibiting broad application prospects and potential clinical value in disease treatment and drug development. This review mainly introduced present progress of nucleic acid-driven lysosome-targeting chimeras technology, including its basic composition, its advantages compared with antibody or glycopeptide-based lysosome-targeting chimeras, and focused on its chief application, in terms of the type of lysosome-targeting receptors. Most research about the development of nucleic acid-driven lysosome-targeting chimeras focused on those which utilized cation-independent mannose-6-phosphonate receptor as the lysosome-targeting receptor. Both mannose-6-phosphonate-modified glycopeptide and nucleic aptamer targeting cation-independent mannose-6-phosphonate receptor, even double-stranded DNA molecule moiety can be taken advantage as the ligand to lysosome-targeting receptor. The same as classical lysosome-targeting chimeras, asialoglycoprotein receptor can also be used for advance of nucleic acid-driven lysosome-targeting chimeras. Another new-found lysosome-targeting receptor, scavenger receptor, can bind dendritic DNA molecules to mediate cellular internalization of complex and lysosomal degradation of target protein, suggesting the successful application of scavenger receptor-mediated nucleic acid-driven lysosome-targeting chimeras. In addition, this review briefly overviewed the history of lysosome-targeting chimeras, including first-generation and second-generation lysosome-targeting chimeras through cation-independent mannose-6-phosphonate receptor-mediated and asialoglycoprotein receptor-mediated endocytosis respectively, so that a clear timeline can be presented for the advance of chimera technique. Meantime, current deficiency and challenge of lysosome-targeting chimeras was also mentioned to give some direction for deep progress of lysosome-targeting chimeras. Finally, according to faulty lysosomal degradation efficiency, more cellular mechanism where lysosome-targeting chimeras perform degradation of protein of interest need to be deeply explored. In view of current progress and direction of nucleic acid-driven lysosome-targeting chimeras, we discussed its current challenges and development direction in the future. Stability of natural nucleic acid molecule and optimized chimera construction have a great influence on the biological function of lysosome-targeting chimeras. Discovery of novel lysosome-targeting receptors and nucleic aptamer with higher affinity to the target will greatly facilitate profound advance of chimera technique. In summary, nucleic acid-driven lysosome-targeting chimeras have many superiorities, such as lower immunogenicity, expedient synthesis of chimera molecules and so on, in contrast to classical lysosome-targeting chimeras, making it more valuable. Also, the chimera technology provides new ideas and methods for biomedical research, drug development and clinical treatment, and can be used more widely through further research and optimization.
2.Ginkgo biloba extract alleviates oxygen and glucose deprivation/reperfusion injury in cardiac microvascular endothelial cells by regulating NF-κB and CHOP signaling pathways through SIRT6
Mukaddas ABDURAHMAN ; Zhenyang GUO ; Junbo GE ; Hua LI
Chinese Journal of Clinical Medicine 2025;32(1):46-57
Objective To explore the effects of Ginkgo biloba extract (GBE) on cardiac microvascular endothelial cells (CMECs) under oxygen and glucose deprivation/reperfusion (OGD/R) condition and its molecular mechanisms. Methods An OGD/R-induced injury model was established in CMECs. According to different intervention, CMECs were divided into four groups: normoxia blank control group (WT group), WT + GBE group, OGD/R group, and OGD/R + GBE group. Cell apoptosis was detected by flow cytometry technology in each group. The oxidative stress was examined by MitoSox staining. The migration abilities were measured by scratch assay. The expressions of PERK/eIF2α/CHOP, nuclear factor kappa B (NF-κB), and endothelial cell function markers were detected by Western blotting. Results Compared with the WT group, the endothelial cell apoptosis level in the OGD/R group significantly increased, with markedly aggravated cellular dysfunction. The expressions of p-NF-κB, vascular cell adhesion molecule-1 (VCAM-1), and intercellular cell adhesion molecule-1 (ICAM-1) were significantly upregulated (P<0.05), and the activation of the CHOP signaling pathway was notably enhanced (P<0.05). After intervention with GBE, endothelial cell apoptosis caused by OGD/R injury was significantly reduced, oxidative stress and inflammation levels were markedly downregulated, and the expression of p-NF-κB was considerably decreased (P<0.05), while the CHOP signaling pathway was notably inhibited (P<0.05). Furthermore, it was found that GBE could promote expression of SIRT6 to regulate the above molecules, thereby alleviating cardiac microvascular endothelial cell injury under OGD/R condition. On the contrary, when SIRT6 was knocked down, the protective effects were significantly reduced. Conclusions GBE improves endothelial cell dysfunction, endoplasmic reticulum stress, and endothelial cell apoptosis caused by OGD/R injury by promoting the expression of SIRT6 protein, thus regulating the NF-κB inflammatory pathway and CHOP signaling pathway.
3.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
4.Analysis of abnormal individual dose monitoring results in 206 medical institutions in a selected region in 2024
Hua TUO ; Wenyan LI ; Lantao LIU ; Guiying ZHANG ; Zeqin GUO ; Heyan WU
Chinese Journal of Radiological Health 2025;34(4):471-476
Objective To analyze the abnormal individual dose monitoring results in 206 medical institutions in a selected region in 2024, and to propose improvement measures. Methods Individuals with monitoring results exceeding the investigation level were subjected to high-dose investigation, and the results were statistically analyzed. Results In 2024, the individual dose monitoring of 206 medical institutions in a selected region showed 1.04% abnormal results. The proportions of abnormal results from primary, secondary, and tertiary medical institutions were 12.22%, 3.33%, and 84.45%, respectively. In analysis of the causes of abnormal results, 52.53% of the cases were due to personal dosimeters left in the radiation workplace, and 20.20% were due to the confusion in wearing personal dosimeters inside and outside the lead apron. In analysis of the occupational distribution of the radiation workers with abnormal monitoring results, interventional radiology and diagnostic radiology accounted for 73.34% and 24.44%, respectively. Statistical analysis of the dose range showed that doses in the ranges of 1.25-2.0 mSv and 2.0-5.0 mSv accounted for 42.22% and 33.33%, respectively. In the report of abnormal monitoring results, the proportions of reporting notional dose and reporting measured results accounted for 88.89% and 11.11%, respectively. Among institutions with consecutive abnormal results, primary, secondary, and tertiary medical institutions accounted for 15.39%, 7.69%, and 76.92%, respectively. Conclusion The level of the hospital, occupational type, the perceived importance of the hospital to the management of radiation protection, and the perceived importance and compliance of the radiation workers with the individual dose monitoring are potential causes of abnormal results. It is recommended that employers should enhance radiation protection training for their radiation workers to ensure proper wearing and storage of dosimeters, and progressively improve the standardization and effectiveness of individual dose monitoring practice.
5.Electroacupuncture at Sensitized Acupoints Relieves Somatic Referred Pain in Colitis Rats by Inhibiting Sympathetic-Sensory Coupling to Interfere with 5-HT Signaling Pathway.
Ying YANG ; Jin-Yu QU ; Hua GUO ; Hai-Ying ZHOU ; Xia RUAN ; Ying-Chun PENG ; Xue-Fang SHEN ; Jin XIONG ; Yi-Li WANG
Chinese journal of integrative medicine 2024;30(2):152-162
OBJECTIVE:
To investigate whether electroacupuncture (EA) at sensitized acupoints could reduce sympathetic-sensory coupling (SSC) and neurogenic inflammatory response by interfering with 5-hydroxytryptamine (5-HT)ergic neural pathways to relieve colitis and somatic referred pain, and explore the underlying mechanisms.
METHODS:
Rats were treated with 5% dextran sodium sulfate (DSS) solution for 7 days to establish a colitis model. Twelve rats were randomly divided into the control and model groups according to a random number table (n=6). According to the "Research on Rat Acupoint Atlas", sensitized acupoints and non-sensitized acupoints were determined. Rats were randomly divided into the control, model, Zusanli-EA (ST 36), Dachangshu-EA (BL 25), and Xinshu (BL 15) groups (n=6), as well as the control, model, EA, and EA + GR113808 (a 5-HT inhibitor) groups (n=6). The rats in the control group received no treatment. Acupuncture was administered on 2 days after modeling using the stimulation pavameters: 1 mA, 2 Hz, for 30 min, with sparse and dense waves, for 14 consecutive days. GR113808 was injected into the tail vein at 5 mg/kg before EA for 10 min for 7 consecutive days. Mechanical sensitivity was assessed with von Frey filaments. Body weight and disease activity index (DAI) scores of rats were determined. Hematoxylin and eosin staining was performed to observe colon histopathology. SSC was analyzed by immunofluorescence staining. Immunohistochemical staining was performed to detect 5-HT and substance P (SP) expressions. The calcitonin gene-related peptide (CGRP) in skin tissue and tyrosine hydroxylase (TH) protein levels in DRG were detected by Western blot. The levels of hyaluronic acid (HA), bradykinin (BK), prostaglandin I2 (PGI2) in skin tissue, 5-HT, tryptophan hydroxylase 1 (TPH1), serotonin transporters (SERT), 5-HT 3 receptor (5-HT3R), and 5-HT 4 receptor (5-HT4R) in colon tissue were measured by enzyme-linked immunosorbent assay (ELISA).
RESULTS:
BL 25 and ST 36 acupoints were determined as sensitized acupoints, and BL 15 acupoint was used as a non-sensitized acupoint. EA at sensitized acupoints improved the DAI score, increased mechanical withdrawal thresholds, and alleviated colonic pathological damage of rats. EA at sensitized acupoints reduced SSC structures and decreased TH and CGRP expression levels (P<0.05). Furthermore, EA at sensitized acupoints reduced BK, PGI2, 5-HT, 5-HT3R and TPH1 levels, and increased HA, 5-HT4R and SERT levels in colitis rats (P<0.05). GR113808 treatment diminished the protective effect of EA at sensitized acupoints in colitis rats (P<0.05).
CONCLUSION
EA at sensitized acupoints alleviated DSS-induced somatic referred pain in colitis rats by interfering with 5-HTergic neural pathway, and reducing SSC inflammatory response.
Rats
;
Animals
;
Electroacupuncture
;
Rats, Sprague-Dawley
;
Serotonin
;
Acupuncture Points
;
Pain, Referred
;
Calcitonin Gene-Related Peptide
;
Signal Transduction
;
Colitis/therapy*
;
Indoles
;
Sulfonamides
6.Based on LC-MS technology explored the metabolomics of Agrimonia pilosa intervening in non-small cell lung cancer A549 cells
Ze-hua TONG ; Wen-jun GUO ; Han-rui ZOU ; Li-wei XU ; Ya-juan XU ; Wei-fang WANG
Acta Pharmaceutica Sinica 2024;59(3):704-712
The objective of this study was to analyze the effects on cell viability, apoptosis, and cell cycle of non-small cell lung cancer (NSCLC) A549 cells after intervention with
7.Three 2,3-diketoquinoxaline alkaloids with hepatoprotective activity from Heterosmilax yunnanensis
Rong-rong DU ; Xin-yi GUO ; Wen-jie QIN ; Hua SUN ; Xiu-mei DUAN ; Xiang YUAN ; Ya-nan YANG ; Kun LI ; Pei-cheng ZHANG
Acta Pharmaceutica Sinica 2024;59(2):413-417
Three 2,3-diketoquinoxaline alkaloids were isolated from
8.Effect of Yiqi Huayu Decoction Combined with Calcium Dobesilate in Treating Diabetic Kidney Disease with Qi Deficiency and Blood Stasis Syndrome and Its Effect on the Expression Levels of Vascular Endothelial Growth Factor and Insulin-like Growth Factor 1
Hong-Mei PAN ; Zhong-Yong ZHANG ; Jin-Rong MA ; Guo-Hua LI ; Wei-Yi GUO ; Yang ZUO
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):583-589
Objective To investigate the clinical efficacy of Yiqi Huayu Decoction(mainly composed of Astragali Radix,Dioscoreae Rhizoma,Poria,fried Euryales Semen,Ecliptae Herba,Rosae Laevigatae Fructus,charred Crataegi Fructus,Ligustri Lucidi Fructus,Salviae Miltiorrhizae Radix et Rhizoma,and Leonuri Herba)combined with Calcium Dobesilate in the treatment of diabetic nephropathy(DN)with qi deficiency and blood stasis syndrome,and to observe the effect of the therapy on vascular endothelial growth factor(VEGF)and insulin-like growth factor 1(IGF-1).Methods Ninety patients with DN of qi deficiency and blood stasis type were randomly divided into an observation group and a control group,with 45 patients in each group.All patients received basic hypoglycemic therapy and treatment for controlling blood pressure and regulating lipid metabolism disorders.Moreover,the patients in the control group were given Calcium Dobesilate orally,and the patients in the observation group were given Yiqi Huayu Decoction combined with Calcium Dobesilate.The course of treatment lasted for 3 months.The changes of traditional Chinese medicine(TCM)syndrome scores,renal function parameters and serum VEGF and IGF-1 levels in the two groups of patients were observed before and after the treatment,and the clinical efficacy of the two groups was evaluated after treatment.Results(1)After 3 months of treatment,the total effective rate of the observation group was 91.11%(41/45),and that of the control group was 75.56%(34/45).The intergroup comparison(tested by chi-square test)showed that the therapeutic effect of the observation group was significantly superior to that of the control group(P<0.05).(2)After one month and 3 months of treatment,the TCM syndrome scores of both groups were significantly lower than those before treatment(P<0.05),and the scores after 3 months of treatment in the two groups were significantly lower than those after one month of treatment(P<0.05).The intergroup comparison showed that the reduction of TCM syndrome scores of the observation group was significantly superior to that of the control group after one month and 3 months of treatment(P<0.01).(3)After treatment,the levels of renal function parameters such as serum creatinine(Scr),blood urea nitrogen(BUN),and glomerular filtration rate(GFR)in the two groups of patients were significantly improved compared with those before treatment(P<0.05),and the observation group's effect on the improvement of all renal function parameters was significantly superior to that of the control group(P<0.01).(4)After treatment,the serum VEGF and IGF-1 levels in the two groups of patients were significantly lower than those before treatment(P<0.05),and the observation group's effect on the decrease of serum VEGF and IGF-1 levels was significantly superior to that of the control group(P<0.01).(5)In the course of treatment,no significant adverse reactions occurred in the two groups of patients,with a high degree of safety.Conclusion Yiqi Huayu Decoction combined with Calcium Dobesilate exerts certain therapeutic effect in treating DN patients with qi deficiency and blood stasis syndrome.The combined therapy can effectively down-regulate the serum levels of VEGF and IGF-1,significantly improve the renal function,and alleviate the clinical symptoms of the patients,with a high degree of safety.
9.Discussion on the Evolution of the Traditional Preparation Process of Pinelliae Rhizoma Fermentata
Da-Meng YU ; Hui-Fang LI ; Chun MA ; Guo-Dong HUA ; Qiang LI ; Xue-Yun YU ; Li-Wei LIU
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(3):790-797
This article discussed the evolution of the traditional preparation process of Pinelliae Rhizoma Fermentata.The production methods for Pinelliae Rhizoma Fermentata in Song Dynasty include cake-making of Pinelliae Rhizoma together with ginger juice and fermentation after cake-making,and the former method of cake-making was the mainstream.The process technology in Jin and Yuan Dynasties inherited from that in Song Dynasty,and the application of Pinelliae Rhizoma Fermentata had certain limitations.The medical practitioners of Ming Dynasty elucidated the mechanism of processing of Pinelliae Rhizoma Fermentata,and proposed the view of"sliced Pinelliae Rhizoma being potent while fermented Pinelliae Rhizoma being mild".In the Ming Dynasty,LI Shi-Zhen defined the cake-making process and fermentation process for Pinelliae Rhizoma,and HAN Mao's Han Shi Yi Tong(Han's Clear View of Medicine)contained five prescriptions for the processing of Pinelliae Rhizoma Fermentata,which had the epoch-making signficance in the expansion of prescriptions for the processing of Pinelliae Rhizoma Fermentata.In the Qing Dynasty,HAN Fei-Xia's ten methods for making Pinelliae Rhizoma Fermentata were summarized on the basis of the methods recorded in Han Shi Yi Tong,and at that time,the processing of Pinelliae Rhizoma Fermentata and the preparation of Massa Medicata Fermentata interacted with each other.After the founding of the People's Republic of China,the local experience in the preparation of Pinelliae Rhizoma Fermentata was deeply influenced by the methods in the Qing Dynasty,and the local preparation technical standards gradually became the same.Moreover,this article also explored the issues of the importance of"Pinelliae Rhizoma"and"ingredients for fermentation",the pre-treatment of Pinelliae Rhizoma,the distinction between cake-making process and fermentation process for Pinelliae Rhizoma,the amount of flour added as well as the timing of adding,the addition of Massa Medicata Fermentata powder,the role of Alum in Pinelliae Rhizoma Fermentata and so on.
10.Longitudinal extrauterine growth restriction in extremely preterm infants: current status and prediction model
Xiaofang HUANG ; Qi FENG ; Shuaijun LI ; Xiuying TIAN ; Yong JI ; Ying ZHOU ; Bo TIAN ; Yuemei LI ; Wei GUO ; Shufen ZHAI ; Haiying HE ; Xia LIU ; Rongxiu ZHENG ; Shasha FAN ; Li MA ; Hongyun WANG ; Xiaoying WANG ; Shanyamei HUANG ; Jinyu LI ; Hua XIE ; Xiaoxiang LI ; Pingping ZHANG ; Hua MEI ; Yanju HU ; Ming YANG ; Lu CHEN ; Yajing LI ; Xiaohong GU ; Shengshun QUE ; Xiaoxian YAN ; Haijuan WANG ; Lixia SUN ; Liang ZHANG ; Jiuye GUO
Chinese Journal of Neonatology 2024;39(3):136-144
Objective:To study the current status of longitudinal extrauterine growth restriction (EUGR) in extremely preterm infants (EPIs) and to develop a prediction model based on clinical data from multiple NICUs.Methods:From January 2017 to December 2018, EPIs admitted to 32 NICUs in North China were retrospectively studied. Their general conditions, nutritional support, complications during hospitalization and weight changes were reviewed. Weight loss between birth and discharge > 1SD was defined as longitudinal EUGR. The EPIs were assigned into longitudinal EUGR group and non-EUGR group and their nutritional support and weight changes were compared. The EPIs were randomly assigned into the training dataset and the validation dataset with a ratio of 7∶3. Univariate Cox regression analysis and multiple regression analysis were used in the training dataset to select the independent predictive factors. The best-fitting Nomogram model predicting longitudinal EUGR was established based on Akaike Information Criterion. The model was evaluated for discrimination efficacy, calibration and clinical decision curve analysis.Results:A total of 436 EPIs were included in this study, with a mean gestational age of (26.9±0.9) weeks and a birth weight of (989±171) g. The incidence of longitudinal EUGR was 82.3%(359/436). Seven variables (birth weight Z-score, weight loss, weight growth velocity, the proportion of breast milk ≥75% within 3 d before discharge, invasive mechanical ventilation ≥7 d, maternal antenatal corticosteroids use and bronchopulmonary dysplasia) were selected to establish the prediction model. The area under the receiver operating characteristic curve of the training dataset and the validation dataset were 0.870 (95% CI 0.820-0.920) and 0.879 (95% CI 0.815-0.942), suggesting good discrimination efficacy. The calibration curve indicated a good fit of the model ( P>0.05). The decision curve analysis showed positive net benefits at all thresholds. Conclusions:Currently, EPIs have a high incidence of longitudinal EUGR. The prediction model is helpful for early identification and intervention for EPIs with higher risks of longitudinal EUGR. It is necessary to expand the sample size and conduct prospective studies to optimize and validate the prediction model in the future.

Result Analysis
Print
Save
E-mail