1. The neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/reperfusion in rats
Hui-Ling WU ; Qing-Qing WU ; Jing-Quan CHEN ; Bin-Bin ZHOU ; Zheng-Shuang YU ; Ze-Lin YANG ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(1):70-75
Aim To study the neuroprotective effects of Herba siegesbeckiae extract on cerebral ischemia/ reperfusion rats and its mechanism. Methods Sixty SD rats were randomly divided into model group, low, middle and high dose groups of Herba siegesbeckiae, and Sham operation group, and the drug was given continuously for seven days. The degree of neurologic impairment was evaluated by mNSS, and the infarct volume was measured by MRI. The number of Nissl-posi- tive cells was detected by Nissl staining, and the apop- tosis was accessed by Tunel staining. Furthermore, the expression of Bax, Bcl-2 and NeuN was observed by Western blot, and the expression of NeuN was detected by immunofluorescence staining. The expression of IL- 1β, TNF-α and IL-6 mRNA was performed by RT- qPCR. Results The mNSS score and the volume of ischemic cerebral infarction in the model group were significantly increased, and Herba siegesbeckiae extract treatment significantly decreased the mNSS score and infarct volume (P<0.05, P<0.01). Herba siegesbeckiae extract could increase the number of Nissl-pos- itive cells and the expression of NeuN (P<0.01), and reduce the number of Tunel-positive cells (P<0.01). Western blot showed that Herba siegesbeckiae extract inhibited the expression of Bax, increased Bcl-2 and NeuN in ischemic brain tissue (P<0.01). RT-qPCR showed that Herba siegesbeckiae extract inhibited the expression of IL-1 β, TNF-α and IL-6 mRNA in the is-chemic brain tissue (P<0.01). Conclusions Herba siegesbeckiae extract can reduce the cerebral infarction volume, improve the neurological function damage, inhibit the apoptosis of nerve cells and the expression of inflammatory factors and promote the expression of NeuN, there by exerting protective effects on MCAO rats.
2.Research on the regulation of ferroptosis in hepatic stellate cells line LX2 by recombinant cytoglobin
Xun-wei DUAN ; Gui-qing XIAO ; Huai-yu CHEN ; Yong ZHANG ; Wen-lin WU ; Yi GAO ; Yong DIAO
Acta Pharmaceutica Sinica 2024;59(8):2237-2244
Intracellular overexpression of cytoglobin (Cygb) has been shown to reduce extracellular matrix deposition and promote liver fibrosis recovery, but its mechanism is not yet clear. This study constructed and expressed a fusion protein (TAT-Cygb) of cell penetrating peptide TAT and Cygb, to investigate the effect of fusion protein TAT-Cygb on regulating hepatic stellate cells (HSCs) ferroptosis. Cultured human hepatic stellate cells line (LX2) were treated with TAT-Cygb and erastin
3.Effect of salidroside on ischemic brain injury in rats
Qing-Qing WU ; Hui-Lin WU ; Bin-Bin ZHOU ; Zheng-Shuang YU ; Ze-Lin YANG ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(5):873-880
Aim To study the permeability of salidro-side(Sal)to the blood brain barrier(BBB)by high-performance liquid chromatography electrospray ioniza-tion tandem mass spectrometry(UPLC-ESI-MS-MS),and to explore the target and mechanism of Sal in the treatment of ischemic stroke(IS)by network pharma-cology,molecular docking technique and animal exper-iment.Methods UPLC-ESI-MS/MS was used to study the BBB penetration of Sal.Multiple databases were used to predict the target of Sal and the disease target of IS,GO and KEGG enrichment analysis were performed and verified by molecular docking technique and animal experiments.Results After Sal adminis-tration to normal rats and MCAO rats,Sal prototype and the metabolite tyrosol were detected in plasma and brain tissue of rats.A total of 191 targets were identi-fied by network pharmacology,the enrichment analysis of GO mainly involved in the biological processes of proteolysis and positive regulation of cell migration,and the analysis of KEGG pathway suggested that PI3K-Akt,MAPK,FOXO and other signaling path-ways played a key role in the treatment of IS by Sal The results of molecular docking showed that Sal had good binding ability with the core target of docking,and the results of animal experiments showed that Sal could significantly improve the neurologic impairment of MCAO rats,the number of Nissl-positive cells in is-chemic side significantly increased,and the expression of VEGF,EGFR and IGF1 increased,while the ex-pression of IL-6 and MMP9 was inhibited.Conclu-sions Sal is able to penetrate the BBB and enter the central nervous system for its pharmacological effects.Network pharmacology predicts the core targets of Sal in the treatment of IS,including VEGFA,EGFR,IL-6,MMP9,IGF1,CASP3,ALB,SRC.The effects of Sal on some core targets can be verified by animal ex-periments,to provide a reference for further study of the mechanism of Sal in the treatment of IS.
4.Effect of salidroside combined with rosavin on ischemic brain injury in rats
Wen-Fang LAI ; Yu-Ting JIANG ; Hui-Ling WU ; Qing-Qing WU ; Jing-Quan CHEN ; Xue-Rui ZHENG ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2024;40(12):2303-2311
Aim To study the effect of salidroside combined with rosavin on ischemic stroke in rats.Methods The model of MCAO was established by u-sing thread-embolic method.The rats were divided into the sham group,MCAO group,salidroside combined with rosavin group,positive control group,and the drug was given continuously for seven days.The infarct volume was measured by MRI and neurological deficit score was evaluated by Zea-Longa.The levels of Ne-uN,BDNF,TGF-β1,p-Smad were observed by West-ern blot and immunofluorescence staining.The expres-sions of IL-1β,TNF-α and IL-6 were performed by RT-qPCR/ELISA.The primary cortical neurons were isolated,OGD/R inducted,divided into the normal group,OGD/R group,salidroside combined with rosa-vin group,and TGF-β1 inhibitor+salidroside com-bined with rosavin group,the drug was given for 24 hours,and the expressions of NeuN,BDNF,IL-1β,TNF-α and IL-6 were measured.Results Salidroside combined with rosavin could decrease the infarct vol-ume,improve the neurological function,promote the levels of Neun,BDNF,TGF-β1,p-Smad,and inhibit the expressions of IL-1β,TNF-α and IL-6.Salidroside combined with rosavin could promote NeuN,BDNF,inhibit IL-1β,TNF-α,IL-6 in primary nerve cells in-duced by OGD/R,and these effects were blocked by TGF-β1 inhibitor.Conclusions Salidroside combined with rosavin has neuroprotective effects on MCAO rats,and primary neurons are induced by OGD/R,and these effects are closely related to the TGF-β pathway.
5.Expert consensus on perioperative basic prevention for lower extremity deep venous thrombosis in elderly patients with hip fracture (version 2024)
Yun HAN ; Feifei JIA ; Qing LU ; Xingling XIAO ; Hua LIN ; Ying YING ; Junqin DING ; Min GUI ; Xiaojing SU ; Yaping CHEN ; Ping ZHANG ; Yun XU ; Tianwen HUANG ; Jiali CHEN ; Yi WANG ; Luo FAN ; Fanghui DONG ; Wenjuan ZHOU ; Wanxia LUO ; Xiaoyan XU ; Chunhua DENG ; Xiaohua CHEN ; Yuliu ZHENG ; Dekun YI ; Lin ZHANG ; Hanli PAN ; Jie CHEN ; Kaipeng ZHUANG ; Yang ZHOU ; Sui WENJIE ; Ning NING ; Songmei WU ; Jinli GUO ; Sanlian HU ; Lunlan LI ; Xiangyan KONG ; Hui YU ; Yifei ZHU ; Xifen YU ; Chen CHEN ; Shuixia LI ; Yuan GAO ; Xiuting LI ; Leling FENG
Chinese Journal of Trauma 2024;40(9):769-780
Hip fracture in the elderly is characterized by high incidence, high disability rate, and high mortality and has been recognized as a public health issue threatening their health. Surgery is the preferred choice for the treatment of elderly patients with hip fracture. However, lower extremity deep venous thrombosis (DVT) has an extremely high incidence rate during the perioperative period, and may significantly increase the risk of patients′ death once it progresses to pulmonary embolism. In response to this issue, the clinical guidelines and expert consensuses all emphasize active application of comprehensive preventive measures, including basic prevention, physical prevention, and pharmacological prevention. In this prevention system, basic prevention is the basis of physical and pharmacological prevention. However,there is a lack of unified and definite recommendations for basic preventive measures in clinical practice. To this end, the Orthopedic Nursing Professional Committee of the Chinese Nursing Association and Nursing Department of the Orthopedic Branch of the China International Exchange and Promotive Association for Medical and Health Care organized relevant nursing experts to formulate Expert consensus on perioperative basic prevention for lower extremity deep venous thrombosis in elderly patients with hip fracture ( version 2024) . A total of 10 recommendations were proposed, aiming to standardize the basic preventive measures for lower extremity DVT in elderly patients with hip fractures during the perioperative period and promote their subsequent rehabilitation.
6.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
7.To compare the efficacy and incidence of severe hematological adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia.
Xiao Shuai ZHANG ; Bing Cheng LIU ; Xin DU ; Yan Li ZHANG ; Na XU ; Xiao Li LIU ; Wei Ming LI ; Hai LIN ; Rong LIANG ; Chun Yan CHEN ; Jian HUANG ; Yun Fan YANG ; Huan Ling ZHU ; Ling PAN ; Xiao Dong WANG ; Gui Hui LI ; Zhuo Gang LIU ; Yan Qing ZHANG ; Zhen Fang LIU ; Jian Da HU ; Chun Shui LIU ; Fei LI ; Wei YANG ; Li MENG ; Yan Qiu HAN ; Li E LIN ; Zhen Yu ZHAO ; Chuan Qing TU ; Cai Feng ZHENG ; Yan Liang BAI ; Ze Ping ZHOU ; Su Ning CHEN ; Hui Ying QIU ; Li Jie YANG ; Xiu Li SUN ; Hui SUN ; Li ZHOU ; Ze Lin LIU ; Dan Yu WANG ; Jian Xin GUO ; Li Ping PANG ; Qing Shu ZENG ; Xiao Hui SUO ; Wei Hua ZHANG ; Yuan Jun ZHENG ; Qian JIANG
Chinese Journal of Hematology 2023;44(9):728-736
Objective: To analyze and compare therapy responses, outcomes, and incidence of severe hematologic adverse events of flumatinib and imatinib in patients newly diagnosed with chronic phase chronic myeloid leukemia (CML) . Methods: Data of patients with chronic phase CML diagnosed between January 2006 and November 2022 from 76 centers, aged ≥18 years, and received initial flumatinib or imatinib therapy within 6 months after diagnosis in China were retrospectively interrogated. Propensity score matching (PSM) analysis was performed to reduce the bias of the initial TKI selection, and the therapy responses and outcomes of patients receiving initial flumatinib or imatinib therapy were compared. Results: A total of 4 833 adult patients with CML receiving initial imatinib (n=4 380) or flumatinib (n=453) therapy were included in the study. In the imatinib cohort, the median follow-up time was 54 [interquartile range (IQR), 31-85] months, and the 7-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.2%, 88.4%, 78.3%, and 63.0%, respectively. The 7-year FFS, PFS, and OS rates were 71.8%, 93.0%, and 96.9%, respectively. With the median follow-up of 18 (IQR, 13-25) months in the flumatinib cohort, the 2-year cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) were 95.4%, 86.5%, 58.4%, and 46.6%, respectively. The 2-year FFS, PFS, and OS rates were 80.1%, 95.0%, and 99.5%, respectively. The PSM analysis indicated that patients receiving initial flumatinib therapy had significantly higher cumulative incidences of CCyR, MMR, MR(4), and MR(4.5) and higher probabilities of FFS than those receiving the initial imatinib therapy (all P<0.001), whereas the PFS (P=0.230) and OS (P=0.268) were comparable between the two cohorts. The incidence of severe hematologic adverse events (grade≥Ⅲ) was comparable in the two cohorts. Conclusion: Patients receiving initial flumatinib therapy had higher cumulative incidences of therapy responses and higher probability of FFS than those receiving initial imatinib therapy, whereas the incidence of severe hematologic adverse events was comparable between the two cohorts.
Adult
;
Humans
;
Adolescent
;
Imatinib Mesylate/adverse effects*
;
Incidence
;
Antineoplastic Agents/adverse effects*
;
Retrospective Studies
;
Pyrimidines/adverse effects*
;
Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy*
;
Treatment Outcome
;
Benzamides/adverse effects*
;
Leukemia, Myeloid, Chronic-Phase/drug therapy*
;
Aminopyridines/therapeutic use*
;
Protein Kinase Inhibitors/therapeutic use*
8. Effects of salidroside on cerebral vascular endothelial cells in MCAO rats
Zheng-Shuang YU ; Xue-Rui ZHENG ; Zhi-Yang XIE ; Bin-Bin ZHOU ; Qing-Qing WU ; Hui-Ling WU ; Wen-Fang LAI ; Gui-Zhu HONG
Chinese Pharmacological Bulletin 2023;39(12):2246-2250
Aim To study the effect of salidroside (SAL) on cerebral vascular endothelial cells of rats with ischemic brain injury and its mechanism of action. Methods Twenty-four healthy adult SD male rats were prepared by bolt plugging method to prepare MCAO models,and randomly divided into sham surgery group ( Sham ) , model group ( MCAO ) , and SAL administration group (MCAO + SAL) ,and the concentration of SAL was 50 mg • kg ~ , with a continuous administration for six days. Western blot was used to detect the protein expression of ICAM-1, VCAM-1 , E-se-lectin,and P-selectin in injured brain tissue of rats. In vitro cell experiments using HUVECs were subjected to different concentrations of salidroside (0. 1,1,10 jjunol • L ) and LPS (100 ^g • L ) intervened for 24 hours,and CCK-8 was employed to detect the effects of SAL and LPS on the survival of HUVECs. In vitro an-giogenesis experiments, LPS group ( 100 (jLg • L~ ) and SAL administration group ( LPS + Sal) intervened in HUVECs for 24 hours,and the concentrations of SAL administration were 0. 1,1, and 10 jjunol • L , then the effects of LPS and SAL on their angiogenesis were observed. The protein expressions of ICAM-1, VCAM-1 ,E-selectin,and P-selectin in HUVECs were detected by Western blot. Results SAL could reduce the expression of ICAM-1, VCAM-1, E-selectin, and P-selectin in ischemic brain tissue of MCAO rats. In vitro experimental studies found that salidroside had no effect on the survival of HUVECs. LPS inhibited the angiogenesis of HUVECs, and after the action of SAL, SAL (1,10 jjimol • L ) reversed the effect of LPS and promoted its angiogenesis. Compared with the control group,the expressions of ICAM-1, VCAM-1, E-selectin and P-selectin of HUVECs after LPS stimulation increased, while the expressions of ICAM-1, VCAM-1 , E-selectin and P-selectin were significantly reduced after the addition of SAL, which promoted the angiogenesis ability of HUVECs. Conclusions SAL can improve the ability of cell regeneration in rats with ischemic brain injury and promote the ability of blood vessel formation.
9. Mechanism of ophiopogonin D in treatment of pulmonary fibrosis based on network pharmacology and experimental verification
Wen-Pan PENG ; Yun-Hai ZHOU ; Juan -Man WU ; Gui-Qing PENG ; Yan-Lan GU ; Song YU ; Ming-Zhi PU ; Yong XU
Chinese Pharmacological Bulletin 2023;39(8):1557-1565
Aim To predict the potential mechanism of ophiopogonin D (OPD) against pulmonary fibrosis by network pharmacology, and further verify it by experiment in vivo. Methods This study found that ophiopogon was the most frequently used drug in the treatment of pulmonary fibrosis with deficiency of Qi and Yin through data mining. In order to explore its material basis, network pharmacology analysis was carried out. A model of pulmonary fibrosis was established by bleomycin, and different concentrations of ophiopogonin D were administered to verify the results of the pharmacological network. Results Firstly, through network pharmacology analysis, it was found that mitophagy might be the potential target for ophiopogon to exert anti-pulmonary fibrosis effect. Meanwhile, network topology analysis showed that OPD had the greatest relationship with mitophagy. Animal experiments showed that OPD could relieve pulmonary fibrosis and reduce collagen deposition in mice. At the same time, the detection of mitophagy related proteins showed that the compound could increase the expression of PINK1 and Parkin proteins, reduce the content of P62 protein in lung tissue, and reduce the intracellular ROS level. Conclusions OPD can improve mitochondrial function and play an anti-pulmonary fibrosis role by promoting PINKl/Parkin dependent mitophagy in lung tissue.
10.Histone deacetylase inhibitor pracinostat suppresses colorectal cancer by inducing CDK5-Drp1 signaling-mediated peripheral mitofission
Xiao-Ling LIANG ; Lan OUYANG ; Nan-Nan YU ; Zheng-Hua SUN ; Zi-Kang GUI ; Yu-Long NIU ; Qing-Yu HE ; Jing ZHANG ; Yang WANG
Journal of Pharmaceutical Analysis 2023;13(10):1168-1182
Divisions at the periphery and midzone of mitochondria are two fission signatures that determine the fate of mitochondria and cells.Pharmacological induction of excessively asymmetric mitofission-associated cell death(MFAD)by switching the scission position from the mitochondrial midzone to the periphery represents a promising strategy for anticancer therapy.By screening a series of pan-inhibitors,we identified pracinostat,a pan-histone deacetylase(HDAC)inhibitor,as a novel MFAD inducer,that exhibited a significant anticancer effect on colorectal cancer(CRC)in vivo and in vitro.Pracinostat increased the expression of cyclin-dependent kinase 5(CDK5)and induced its acetylation at residue lysine 33,accelerating the formation of complex CDK5/CDK5 regulatory subunit 1 and dynamin-related protein 1(Drp1)-mediated mitochondrial peripheral fission.CRC cells with high level of CDK5(CDK5-high)displayed midzone mitochondrial division that was associated with oncogenic phenotype,but treatment with pracinostat led to a lethal increase in the already-elevated level of CDK5 in the CRC cells.Mechanistically,pracinostat switched the scission position from the mitochondrial midzone to the periphery by improving the binding of Drp1 from mitochondrial fission factor(MFF)to mitochondrial fission 1 protein(FIS1).Thus,our results revealed the anticancer mechanism of HDACi pracinostat in CRC via activating CDK5-Drp1 signaling to cause selective MFAD of those CDK5-high tumor cells,which implicates a new paradigm to develop potential therapeutic strategies for CRC treatment.

Result Analysis
Print
Save
E-mail