1.Inhibitory effect of miR-133a on liver cancer through tar-geted regulation of G6PD expression
Ya-Dong WANG ; Xue-Jun SUN ; Chun-Yu YANG ; Gui-Ping WANG ; Ming JIN ; He LI ; Jia-Jun YIN
Chinese Journal of Current Advances in General Surgery 2024;27(1):25-29
Objective:To explore if miR-133a is involved in the occurrence and development of hepatocellular carcinoma(HCC)via regulating G6PD.Methods:Bioinformatics analysis predicted the binding sites of miR-133a and G6PD;RT-PCR or western blot was used to assess the expres-sion of miR-133a and G6PD in HCC tissues and the adjacent normal tissues;CCK-8 and flow cy-tometry assays were performed to evaluate the effects of miR-133a/G6PD on cell proliferation,apop-tosis;Fluorescent reporter gene and western blot assays were used to assess the effect of miR-133a on G6PD expression.Results:miR-133a expression was decreased in HCC tissues while G6PD was increased(P0.01);Up-regulation of miR-133a significantly reduced G6PD expression(P<0.01);up-reg-ulation of miR-133a inhibited cell growth and promoted cell apoptosis(P<0.05),whereas these effects induced by miR-133a over-expression were all abolished when G6PD was up-regulated(P<0.01).Conclusion:miR-133a represses the occurrence and development of HCC via targeting G6PD.
2.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
3.Discovery of a highly potent and orally available importin-β1 inhibitor that overcomes enzalutamide-resistance in advanced prostate cancer.
Jia-Luo HUANG ; Xue-Long YAN ; Dong HUANG ; Lu GAN ; Huahua GAO ; Run-Zhu FAN ; Shen LI ; Fang-Yu YUAN ; Xinying ZHU ; Gui-Hua TANG ; Hong-Wu CHEN ; Junjian WANG ; Sheng YIN
Acta Pharmaceutica Sinica B 2023;13(12):4934-4944
Nuclear transporter importin-β1 is emerging as an attractive target by virtue of its prevalence in many cancers. However, the lack of druggable inhibitors restricts its therapeutic proof of concept. In the present work, we optimized a natural importin-β1 inhibitor DD1 to afford an improved analog DD1-Br with better tolerability (>25 folds) and oral bioavailability. DD1-Br inhibited the survival of castration-resistant prostate cancer (CRPC) cells with sub-nanomolar potency and completely prevented tumor growth in resistant CRPC models both in monotherapy (0.5 mg/kg) and in enzalutamide-combination therapy. Mechanistic study revealed that by targeting importin-β1, DD1-Br markedly inhibited the nuclear accumulation of multiple CRPC drivers, particularly AR-V7, a main contributor to enzalutamide resistance, leading to the integral suppression of downstream oncogenic signaling. This study provides a promising lead for CRPC and demonstrates the potential of overcoming drug resistance in advanced CRPC via targeting importin-β1.
4.Research progress on the effect mechanism of acupuncture-moxibustion for pressure injuries.
Hong-Na YIN ; Yang CUI ; Zhong-Ren SUN ; De-Long WANG ; Xin-Yu ZHOU ; Jian-Tao YIN ; Shuo ZHANG ; Gui-Jun LIU
Chinese Acupuncture & Moxibustion 2023;43(8):970-976
Evidence shows that acupuncture-moxibustion could promote the healing of pressure injuries (PI), but its action mechanism is not fully understood. This review summarizes the basic research literature of acupuncture-moxibustion for PI and identifies that the mechanism of acupuncture-moxibustion for PI is related with regulation of related signaling pathway target proteins, improvement of inflammatory response, modulation of vascular microenvironment, attenuation of oxidative stress damage, and inhibition of cell apoptosis. The review also points out the current limitations and future research directions. It emphasizes the need for further exploration of the upstream regulatory mechanism, specific cellular molecules, and the interactions among these molecules. A multi-level, multi-target, and multi-dimensional approach is required to fully understand the mechanism underlying the promotion of PI healing by acupuncture-moxibustion.
Humans
;
Moxibustion
;
Pressure Ulcer
;
Acupuncture Therapy
;
Acupuncture
;
Apoptosis
5.Mechanism of Dendrobium huoshanense in Treatment of Gastric Ulcer: Based on Network Pharmacology and in Vivo Experiment
Wen-qi GUI ; Yuan FANG ; Xiao-yu LIAO ; Ji SUN ; Nian-jun YU ; Dai-yin PENG ; Lan HAN
Chinese Journal of Experimental Traditional Medical Formulae 2022;28(7):151-161
ObjectiveTo explore the mechanism of Dendrobium huoshanense in the treatment of gastric ulcer (GU) based on network pharmacology and in vivo experiment. MethodThe active components of D. huoshanense were searched from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, and the targets of the components were screened from TCMSP and SwissTargetPrediction. GU-related genes were retrieved from GeneCards, Online Mendelian Inheritance in Man (OMIM), and DisGeNET. Thereby, the common targets of the disease and the medicinal were yielded and the protein-protein interaction (PPI) network was constructed, followed by Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. According to the predicted results, hematoxylin-eosin (HE) staining, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA), Western blot, and real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) were used to validate the effects of D. huoshanense on acetic acid-induced GU in rats. ResultA total of 63 active components of D. huoshanense and 37 target genes of D. huoshanense for the treatment of GU were screened out. PPI network analysis yielded several possible core anti-GU targets of D. huoshanense. They influenced the development of GU by acting on signaling pathways such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt), hypoxia inducible factor-1 (HIF-1), tumor necrosis factor (TNF), and nuclear factor-κB (NF-κB), and various biological processes. The in vivo experiment showed that D. huoshanense significantly reduced the levels of inflammatory factors such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and TNF-α in the serum of model rats (P<0.05, P<0.01), increased gastric blood flow (GBF) at the ulcer margin, raised the expression of epidermal growth factor (EGF) and epidermal growth factor receptor (EGFR) at the ulcer margin (P<0.01), significantly down-regulated protein and mRNA expression of PI3K and Akt, and up-regulated protein and mRNA expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN) in the gastric tissues of GU rats (P<0.01). ConclusionThrough regulating EGFR/PI3K/Akt signaling pathway, D. huoshanense can inhibit tissue inflammation, increase gastric microcirculatory blood flow at the ulcer margin, and promote cell proliferation and repair of damaged gastric mucosa.
6.Inverted U-Shaped Associations between Glycemic Indices and Serum Uric Acid Levels in the General Chinese Population: Findings from the China Cardiometabolic Disease and Cancer Cohort (4C) Study.
Yuan Yue ZHU ; Rui Zhi ZHENG ; Gui Xia WANG ; Li CHEN ; Li Xin SHI ; Qing SU ; Min XU ; Yu XU ; Yu Hong CHEN ; Xue Feng YU ; Li YAN ; Tian Ge WANG ; Zhi Yun ZHAO ; Gui Jun QIN ; Qin WAN ; Gang CHEN ; Zheng Nan GAO ; Fei Xia SHEN ; Zuo Jie LUO ; Ying Fen QIN ; Ya Nan HUO ; Qiang LI ; Zhen YE ; Yin Fei ZHANG ; Chao LIU ; You Min WANG ; Sheng Li WU ; Tao YANG ; Hua Cong DENG ; Jia Jun ZHAO ; Lu Lu CHEN ; Yi Ming MU ; Xu Lei TANG ; Ru Ying HU ; Wei Qing WANG ; Guang NING ; Mian LI ; Jie Li LU ; Yu Fang BI
Biomedical and Environmental Sciences 2021;34(1):9-18
Objective:
The relationship between serum uric acid (SUA) levels and glycemic indices, including plasma glucose (FPG), 2-hour postload glucose (2h-PG), and glycated hemoglobin (HbA1c), remains inconclusive. We aimed to explore the associations between glycemic indices and SUA levels in the general Chinese population.
Methods:
The current study was a cross-sectional analysis using the first follow-up survey data from The China Cardiometabolic Disease and Cancer Cohort Study. A total of 105,922 community-dwelling adults aged ≥ 40 years underwent the oral glucose tolerance test and uric acid assessment. The nonlinear relationships between glycemic indices and SUA levels were explored using generalized additive models.
Results:
A total of 30,941 men and 62,361 women were eligible for the current analysis. Generalized additive models verified the inverted U-shaped association between glycemic indices and SUA levels, but with different inflection points in men and women. The thresholds for FPG, 2h-PG, and HbA1c for men and women were 6.5/8.0 mmol/L, 11.0/14.0 mmol/L, and 6.1/6.5, respectively (SUA levels increased with increasing glycemic indices before the inflection points and then eventually decreased with further increases in the glycemic indices).
Conclusion
An inverted U-shaped association was observed between major glycemic indices and uric acid levels in both sexes, while the inflection points were reached earlier in men than in women.
Aged
;
Asian Continental Ancestry Group
;
Blood Glucose/analysis*
;
China/epidemiology*
;
Cohort Studies
;
Diabetes Mellitus/blood*
;
Female
;
Glucose Tolerance Test
;
Glycated Hemoglobin A/analysis*
;
Glycemic Index
;
Humans
;
Male
;
Middle Aged
;
Uric Acid/blood*
7.Pseudoallergic Reactions of Xuebijing Injection and Its Rational Drug Use
Yan YI ; Chun-ying LI ; Yu-shi ZHANG ; Yong ZHAO ; Gui-ping ZHANG ; Jia-yin HAN ; Jing-zhuo TIAN ; Lian-mei WANG ; Chen PAN ; Su-yan LIU ; Ai-hua LIANG
Chinese Journal of Experimental Traditional Medical Formulae 2021;27(5):77-83
Objective:To investigate whether the adverse reactions of Xuebijing injection (XBJJ) are mainly pseudoallergic reactions and explore the influencing factors of its pseudoallergic reactions. Method:Mouse model of pseudoallergic reaction was used to study the anaphylactoid reaction of XBJJ which at 0.5, 1 and 2 times of the highest clinical concentration. Next, we compared the differences in pseudoallergic reactions caused by XBJJ for different storage times after preparation. Specifically, XBJJ was prepared into different concentrations, stored for 10 minutes, 2.5 hours, 6 hours and 24 hours, and then injected into the tail vein of mice. Finally, three different injection speeds of 3 seconds, 45 seconds and 90 seconds were selected for XBJJ injection, and then the differences in the paeudoallergic reactions induced by XBJJ in mice under different injection speeds were compared. Result:XBJJ induces pseudoallergic reactions in mice when the drug concentration is higher than the clinically recommended concentration. Compared with storage for 10 minutes after preparation, the degree of pseudoallergic reaction in mice induced by the same concentration of XBJJ increased with the extension of storage time. In addition, when XBJJ was injected in 3 s (the injection rate was 0.083 mL·s-1), it produced the strongest pseudoallergic reaction. Conclusion:The adverse reactions induced by XBJJ are mainly pseudoallergic reactions. Excessive storage time after preparation and fast injection speed of XBJJ will lead to aggravation of pseudoallergic reactions in mice. When XBJJ is used clinically, it should strictly follow the usage, dosage, concentration, and drip rate recommended in the drug instruction manual. Rational drug use is of positive significance for improving the safety of XBJJ.
8.Association of Overlapped and Un-overlapped Comorbidities with COVID-19 Severity and Treatment Outcomes: A Retrospective Cohort Study from Nine Provinces in China.
Yan MA ; Dong Shan ZHU ; Ren Bo CHEN ; Nan Nan SHI ; Si Hong LIU ; Yi Pin FAN ; Gui Hui WU ; Pu Ye YANG ; Jiang Feng BAI ; Hong CHEN ; Li Ying CHEN ; Qiao FENG ; Tuan Mao GUO ; Yong HOU ; Gui Fen HU ; Xiao Mei HU ; Yun Hong HU ; Jin HUANG ; Qiu Hua HUANG ; Shao Zhen HUANG ; Liang JI ; Hai Hao JIN ; Xiao LEI ; Chun Yan LI ; Min Qing LI ; Qun Tang LI ; Xian Yong LI ; Hong De LIU ; Jin Ping LIU ; Zhang LIU ; Yu Ting MA ; Ya MAO ; Liu Fen MO ; Hui NA ; Jing Wei WANG ; Fang Li SONG ; Sheng SUN ; Dong Ting WANG ; Ming Xuan WANG ; Xiao Yan WANG ; Yin Zhen WANG ; Yu Dong WANG ; Wei WU ; Lan Ping WU ; Yan Hua XIAO ; Hai Jun XIE ; Hong Ming XU ; Shou Fang XU ; Rui Xia XUE ; Chun YANG ; Kai Jun YANG ; Sheng Li YUAN ; Gong Qi ZHANG ; Jin Bo ZHANG ; Lin Song ZHANG ; Shu Sen ZHAO ; Wan Ying ZHAO ; Kai ZHENG ; Ying Chun ZHOU ; Jun Teng ZHU ; Tian Qing ZHU ; Hua Min ZHANG ; Yan Ping WANG ; Yong Yan WANG
Biomedical and Environmental Sciences 2020;33(12):893-905
Objective:
Several COVID-19 patients have overlapping comorbidities. The independent role of each component contributing to the risk of COVID-19 is unknown, and how some non-cardiometabolic comorbidities affect the risk of COVID-19 remains unclear.
Methods:
A retrospective follow-up design was adopted. A total of 1,160 laboratory-confirmed patients were enrolled from nine provinces in China. Data on comorbidities were obtained from the patients' medical records. Multivariable logistic regression models were used to estimate the odds ratio (
Results:
Overall, 158 (13.6%) patients were diagnosed with severe illness and 32 (2.7%) had unfavorable outcomes. Hypertension (2.87, 1.30-6.32), type 2 diabetes (T2DM) (3.57, 2.32-5.49), cardiovascular disease (CVD) (3.78, 1.81-7.89), fatty liver disease (7.53, 1.96-28.96), hyperlipidemia (2.15, 1.26-3.67), other lung diseases (6.00, 3.01-11.96), and electrolyte imbalance (10.40, 3.00-26.10) were independently linked to increased odds of being severely ill. T2DM (6.07, 2.89-12.75), CVD (8.47, 6.03-11.89), and electrolyte imbalance (19.44, 11.47-32.96) were also strong predictors of unfavorable outcomes. Women with comorbidities were more likely to have severe disease on admission (5.46, 3.25-9.19), while men with comorbidities were more likely to have unfavorable treatment outcomes (6.58, 1.46-29.64) within two weeks.
Conclusion
Besides hypertension, diabetes, and CVD, fatty liver disease, hyperlipidemia, other lung diseases, and electrolyte imbalance were independent risk factors for COVID-19 severity and poor treatment outcome. Women with comorbidities were more likely to have severe disease, while men with comorbidities were more likely to have unfavorable treatment outcomes.
Adult
;
Aged
;
COVID-19/virology*
;
China/epidemiology*
;
Comorbidity
;
Female
;
Humans
;
Male
;
Middle Aged
;
Retrospective Studies
;
Severity of Illness Index
;
Treatment Outcome
9.Metabolic abnormalities associated with ketamine-associated bladder toxicity based on metabolomics
Zhi-gui WU ; Wen-xian YIN ; Hong-li LUO ; Yuan-kai SI ; Meng-qi SUN ; Lin-chuan LIAO
Acta Pharmaceutica Sinica 2020;55(8):1849-1854
The aim of the present study was to determine the metabolic changes and possible toxic mechanisms of ketamine-associated bladder toxicity. Twenty-four male Sprague-Dawley (SD) rats were randomly allocated into a control group, a low-dose group and a high-dose group. The behavior of these rats was observed every day. In addition, the weight, 2 h urinary frequency and organ coefficient of the bladder were measured. Serum IL-6 and TNF-
10.Analysis of drug - resistant gene polymorphisms in Plasmodium falciparum imported from Equatorial Guinea to Shandong Province in 2015 and 2016
Guang-Kui NIE ; Chao XU ; Qing-Kuan WEI ; Jin LI ; Ting XIAO ; Hui SUN ; Xiang-Li KONG ; Kun YIN ; Gui-Hua ZHAO ; Ben-Guang ZHANG ; Ge YAN ; Bing-Cheng HUANG
Chinese Journal of Schistosomiasis Control 2020;32(6):612-617
ObjectiveTo investigate the drug-resistant gene polymorphisms in Plasmodium falciparum imported from Equatorial Guinea to Shandong Province. MethodsFrom 2015 to 2016, blood samples were collected from imported P. falciparum malaria patients returning from Equatorial Guinea to Shandong Province, and genome DNA of the malaria parasite was extracted. The drug-resistant Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, and K13 genes of P. falciparum were amplified using a PCR assay, followed by DNA sequencing, and the sequences were aligned. Results The target fragments of all 5 drug-resistant genes of P. falciparum were successfully amplified and sequenced. There were 72.8%, 18.6%, and 8.6% of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfcrt gene, respectively, and all mutant haplotypes were CVIET (the underline indicates the mutation site). There were 20.0%, 61.4% and 18.6% of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfmdr1 gene, respectively, and the mutant haplotypes mainly included YF and NF (the underlines indicate the mutation sites). There were 1.4%, 98.6%, and 0 of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfdhfr gene, respectively, and AIRNI was the predominant mutant haplotype (the underline indicates the mutation site). There were 1.4%, 94.3%, and 4.3% of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfdhps gene, respectively, and SGKAA was the predominant mutant haplotype (the underline indicates the mutation site). The complete drug-resistant IRNGE genotype consisted of 8.6% of the Pfdhfr and Pfdhps genes, and the K13 gene A578S mutation occurred in 1.4% of the parasite samples. Conclusions There are mutations in the Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, and K13 genes of P. falciparum imported from Equatorial Guinea to Shandong Province, with a low frequency in the Pfcrt gene mutation and a high frequency in the Pfmdr1, Pfdhfr, and Pfdhps gene mutations, and the K13 gene A578S mutation is detected in the parasite samples.

Result Analysis
Print
Save
E-mail