1.Effect of Epimedium brevicornu Ethanol Extract on Aging of Castrated Rats by Intervening in Mesenchymal Adipose-derived Stem Cells
Zuyu MENG ; Haiquan LIU ; Shaozi LIN ; Mei WANG ; Yiyao ZHANG ; Fang LIU ; Menghan LI ; Hongling CHEN ; Jiajia QIN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):174-181
ObjectiveTo explore the mechanism by which the ethanol extract of Epimedium brevicornu (EEBM) intervenes in mesenchymal adipose-derived stem cells (ADSCs) to delay aging in castrated rats. MethodsForty-five 3-month-old SPF female SD rats were ovariectomized and randomly divided into model group, ADSCs treatment group, and ADSCs groups treated with low, medium, and high concentrations of EEBM (1, 50, 100 μg·L-1), referred to as the AE low, medium, and high concentration groups, with 9 rats in each group. After tail vein injection of 200 μL of the corresponding stem cell suspension, aging-related indicators including cyclin-dependent kinase inhibitor (p21), tumor suppressor gene (p53), interleukin-6 (IL-6), interleukin-8 (IL-8), superoxide dismutase (SOD), malondialdehyde (MDA), B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), cysteine-aspartic acid protease-3 (Caspase-3), and lipofuscin were measured using enzyme-linked immunosorbent assay (ELISA) and Western blot. ResultsCompared with the model group, the IL-6 content in the AE low, medium, and high concentration groups was significantly decreased (P<0.05). Lipofuscin, MDA, and IL-8 levels in the ADSCs treatment group and AE low, medium, and high concentration groups were significantly reduced (P<0.01), while SOD content was significantly increased (P<0.05, P<0.01). Compared with the ADSCs treatment group, lipofuscin and IL-8 levels in the AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01). The MDA content was significantly decreased in the AE medium concentration group (P<0.01). Compared with the model group, protein levels of p21, p53, Bax, and Caspase-3 in the ADSCs treatment group and AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01), while the Bcl-2 protein level was significantly increased (P<0.01). Compared with the ADSCs treatment group, protein levels of p21, p53, Bax, and Caspase-3 in the AE low, medium, and high concentration groups were significantly reduced (P<0.05, P<0.01), and the Bcl-2 protein level in the AE low concentration group was significantly increased (P<0.01). ConclusionThe results of this experiment show that EEBM-treated ADSCs or ADSCs may delay aging in castrated rats by inhibiting cell apoptosis, reducing cell cycle inhibitors and pro-inflammatory factors, enhancing antioxidant capacity, and reducing oxidative reactions. Moreover, EEBM-treated ADSCs demonstrate stronger anti-aging effects than ADSCs alone. This study provides experimental evidence supporting the clinical use of EEBM to intervene in ADSCs and delay aging.
2.Effect of Huanglian Jiedutang in Regulating Ferroptosis in Mice with Atherosclerosis Based on Nrf2/GPX4 Signaling Pathway
Zhaohui GONG ; Li GAO ; Huiqi ZHAI ; Jinzi YU ; Qingmin CHU ; Chuanjin LUO ; Lijin QING ; Wei WU ; Rong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):22-28
ObjectiveTo study the mechanism of Huanglian Jiedutang (HLJDT) in treating mice with atherosclerosis (AS) by improving ferroptosis. MethodsA total of 10 SPF C57BL/6J mice were selected as a normal group, and 50 ApoE-/- mice were randomly divided into five groups: model group, low-dose group of HLJDT, medium-dose group of HLJDT, high-dose group of HLJDT, and atorvastatin (ATV) group. ApoE-/- mice were fed a high-fat diet for eight weeks to establish the AS model, and at the 9th week, they were given normal saline, low, medium, and high doses of HLJDT (3.9, 7.8, 15.6 g·kg-1·d-1), and atorvastatin calcium tablets (0.01 g·kg-1·d-1), respectively, for a total of eight weeks. The formation of aortic plaque in mice was observed by gross oil red O staining and Masson staining. The levels of total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C) in blood fat were measured by the automatic biochemical analyzer, and the mitochondrial structure of the aorta was observed by transmission electron microscopy. The content of serum superoxide dismutase (SOD) in serum was detected by enzyme-linked immunosorbent assay (ELISA). The content of reduced glutathione (GSH) in serum was detected by the microplate method, and that of malondialdehyde (MDA) in serum was detected by the TBA method. The protein expression of nuclear factor E2-associated factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) signaling pathway was detected by Western blot. ResultsCompared with those of the normal group, the contents of TC, LDL-C, TG, HDL-C, and MDA in the serum and the aortic vascular plaque deposition of the model group were significantly increased (P<0.01), while the expression levels of SOD and GSH in serum, as well as Nrf2, solute carrier family 7 member 11 (SLC7A11), and GPX4 in aorta were significantly decreased (P<0.01). Mice in the model group appeared mitochondrial fragmentation and vacuolation in the aorta, volume atrophy, mitochondrial crista reduction, or a loose and disorganized form. Compared with those in the model group, the aortic vascular plaque deposition was significantly decreased in the low-dose, medium-dose, and high-dose groups of HLJDT and ATV group, and the contents of serum TC, LDL-C, TG, and MDA in serum were significantly decreased (P<0.05, P<0.01). The contents of serum SOD and GSH and the expression levels of Nrf2, SLC7A11, and GPX4 in the aorta were increased (P<0.05, P<0.01), and the symptoms of aortic mitochondrial vacuolation were alleviated. The number of cristae was increased, and they were ordered neatly. ConclusionHLJDT can reduce aortic vascular plaque deposition, decrease blood lipid and MDA expression, increase SOD and GSH expression, and ameliorate the pathological changes of ferroptosis, the mechanism of which is related to the Nrf2/GPX4 signaling pathway.
3.Association between moderate to vigorous intensity physical activity and sedentary behavior among primary and secondary school students and their parents
YAO Zifeng, YE Rongrong, CHEN Jiade, XU Peng, HUANG Yanhong, LI Lixia, LI Hongjuan, GAO Yanhui
Chinese Journal of School Health 2025;46(1):68-72
Objective:
To explore the associations of moderate to vigorous intensity physical activity (MVPA) and sedentary behavior (SB) among primary and secondary school students and their parents, so as to provide a scientific basis for formulating targeted physical activity promotion strategies for children and adolescents.
Methods:
From 2021 to 2022, basic information and 24 h movement behaviors of 2 484 pairs of students and their parents were collected from five primary and secondary schools in Haizhu District, Guangzhou City, with a convenient sampling combining with cluster sampling method. Component regression models were constructed to analyze the relationship between parental MVPA, SB and primary and secondary school students MVPA and SB, and a component isochronous substitution model was used to explore the effects of mutual substitution between parental MVPA, residual components (time use components other than SB during the 24 h period), and SB on the behavioral activities of MVPA and SB in primary and secondary school students.
Results:
Parental MVPA and SB of students in grade 1 to 3 were positively correlated with both students MVPA and SB ( β=0.06, 0.12, P <0.01). The component isochronous substitution model showed that substituting 10 and 20 minutes of MVPA for SB by parents in grade 1 to 3 was associated with an increase in MVPA of students, and substituting 10 and 20 minutes of residual ingredients for SB was associated with a decrease in SB of students, with mean changes of 0.8 (95% CI =0.4-1.2) and 1.4 (95% CI =0.7-2.2) and -1.4 (95% CI =-1.7 to -1.1) and -2.9 (95% CI =-3.4 to -2.3)( P <0.05). No statistically significant associations were observed between parents of students in grades 4 to 6 and 7 to 9 and students physical activity and sedentary behaviour ( P >0.05).
Conclusions
Parents of students in grades 1 to 3 increases MVPA and decrease SB are beneficial to increase MVPA and decrease SB of students. Parents could promote physical activity among primary and secondary school students, and the intervention gateway should be advanced, with the low grades as the optimal intervention period.
4.Research progress of artificial intelligence in the diagnosis and treatment of polypoidal choroidal vasculopathy
Yuting YANG ; Xingming LIAO ; Hongjie MA
International Eye Science 2025;25(3):416-421
Polypoidal choroidal vasculopathy(PCV)is one of the important subtypes of neovascular age-related macular degeneration(nARMD), which causes severe vision loss. It is necessary to distinguish PCV from other nARMD subtypes to guide the clinical treatment plans and predict disease outcomes. In recent years, artificial intelligence(AI)has been widely used in the diagnosis and research of ophthalmic diseases. By utilizing machine learning or deep learning combined with examination images in disease classification, lesion segmentation, and quantitative assessment, etc. This article reviews the recent applications of AI in the differential diagnosis of PCV through various examination images, the segmentation and quantification of biomarkers, as well as the prediction of genotype, response to anti-vascular endothelial growth factor(VEGF)therapy, and the short-term risk of vitreous hemorrhage. It summarizes the difficulties and challenges in clinical practice of AI and looks forward to the advantages and development trends of AI in PCV applications in the future. The article aims to provide more information for further research and application, thereby improving the diagnostic rate of PCV, optimizing treatment plans, and improving patients' visual prognosis.
5.Research progress of artificial intelligence in the diagnosis, treatment and prognosis of retinal detachment
Bingxing LU ; Qianyin CHEN ; Jinglin ZHANG
International Eye Science 2025;25(3):434-439
The application of artificial intelligence(AI)in the medical field, particularly for predicting, diagnosing and treating retinal detachment(RD), has made remarkable achievements. This paper reviews the advancements in AI applications for RD across multiple dimensions, including predicting RD incidence, assessing surgical success rates, forecasting postoperative visual outcomes, and evaluating recurrence rates. In diagnostic support, AI technology has demonstrated significant value, especially in ophthalmic imaging, with applications in the intelligent analysis of ultra-wide-angle fundus photography, optical coherence tomography(OCT), ophthalmologic ultrasound images, and AI chatbots models. Furthermore, AI has proven uniquely beneficial in surgical decision-making, robotic-assisted surgical systems, and the assessment of surgical complications. This paper provides a comprehensive overview of the current state of AI applications in RD, underscoring its potential to address numerous challenges in clinical practice. It also explores existing limitations and offers insights into future directions for development in this field.
6.Research progress of artificial intelligence in the diagnosis and treatment of polypoidal choroidal vasculopathy
Yuting YANG ; Xingming LIAO ; Hongjie MA
International Eye Science 2025;25(3):416-421
Polypoidal choroidal vasculopathy(PCV)is one of the important subtypes of neovascular age-related macular degeneration(nARMD), which causes severe vision loss. It is necessary to distinguish PCV from other nARMD subtypes to guide the clinical treatment plans and predict disease outcomes. In recent years, artificial intelligence(AI)has been widely used in the diagnosis and research of ophthalmic diseases. By utilizing machine learning or deep learning combined with examination images in disease classification, lesion segmentation, and quantitative assessment, etc. This article reviews the recent applications of AI in the differential diagnosis of PCV through various examination images, the segmentation and quantification of biomarkers, as well as the prediction of genotype, response to anti-vascular endothelial growth factor(VEGF)therapy, and the short-term risk of vitreous hemorrhage. It summarizes the difficulties and challenges in clinical practice of AI and looks forward to the advantages and development trends of AI in PCV applications in the future. The article aims to provide more information for further research and application, thereby improving the diagnostic rate of PCV, optimizing treatment plans, and improving patients' visual prognosis.
7.Research progress of artificial intelligence in the diagnosis, treatment and prognosis of retinal detachment
Bingxing LU ; Qianyin CHEN ; Jinglin ZHANG
International Eye Science 2025;25(3):434-439
The application of artificial intelligence(AI)in the medical field, particularly for predicting, diagnosing and treating retinal detachment(RD), has made remarkable achievements. This paper reviews the advancements in AI applications for RD across multiple dimensions, including predicting RD incidence, assessing surgical success rates, forecasting postoperative visual outcomes, and evaluating recurrence rates. In diagnostic support, AI technology has demonstrated significant value, especially in ophthalmic imaging, with applications in the intelligent analysis of ultra-wide-angle fundus photography, optical coherence tomography(OCT), ophthalmologic ultrasound images, and AI chatbots models. Furthermore, AI has proven uniquely beneficial in surgical decision-making, robotic-assisted surgical systems, and the assessment of surgical complications. This paper provides a comprehensive overview of the current state of AI applications in RD, underscoring its potential to address numerous challenges in clinical practice. It also explores existing limitations and offers insights into future directions for development in this field.
8.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
9.Mechanism of Ruyan Neixiao Cream in Promoting Ferroptosis in Breast Precancerous Lesion Cells by Regulating Nrf2/SLC7A11/GPX4 Signaling Pathway
Haotian ZHANG ; Yebei QIU ; Ran SU ; Xianxin YAN ; Min MA
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):98-107
ObjectiveTo explore the mechanism by which Ruyan Neixiao cream (RUC) induces ferroptosis in breast precancerous lesion (BPL) cells, and to enrich the theoretical foundation for its use in the treatment of BPL. MethodsThe inhibition of cell proliferation by 1%, 2%, and 4% concentrations of Ruyanneixiao Cream transdermal solution (RUT) was assessed using cell counting kit-8 (CCK-8) and a colony formation assay. Reactive oxygen species (ROS) were measured using the DCFH-DA probe, and the levels of ferrous ions (Fe2+), glutathione (GSH), and malondialdehyde (MDA) were determined using appropriate kits. Lipid peroxidation was detected with the C11-BODIPY581/591 fluorescent probe. The expression of nuclear factor E2-related factor 2 (Nrf2), solute carrier family 7 member 11 (SLC7A11), and glutathione peroxidase 4 (GPX4) proteins was analyzed by Western blot. The BPL rat model was constructed using 2,2′-bis(hydroxymethyl)butyric acid (DMBA) combined with estrogen and progesterone, and the rats were treated with RUC for external application. After the 12th cycle, the rats were euthanized, and histopathological changes in breast tissue were observed by hematoxylin-eosin (HE) staining. Fe2+ and MDA levels in breast tissue were measured using corresponding kits. The expression of Nrf2, SLC7A11, and GPX4 proteins in BPL rat breast tissue was detected by immunohistochemistry (IHC) and Western blot. ResultsCompared with the matrix group, the cell viability of MCF-10AT cells in the 1%, 2%, and 4% RUT groups was significantly reduced (P<0.05) in a concentration-dependent manner, with the 24-hour half inhibitory concentration (IC50) being 2.23%. Compared with the 4% RUT group, cell viability in the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the colony formation rates of MCF-10AT cells in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the cell colony formation rate of the RUT + Fer-1 group was significantly increased (P<0.05). Compared with the matrix group, the levels of ROS and Fe2+ in the 1%, 2%, and 4% RUT groups were significantly increased (P<0.05), while GSH levels were significantly decreased (P<0.05), and MDA and lipid peroxidation levels were significantly increased (P<0.05). Compared with the 4% RUT group, ROS and Fe2+ levels in the RUT + Fer-1 group were significantly reduced (P<0.05), while GSH levels were significantly increased (P<0.05), and MDA and lipid peroxidation levels were significantly reduced (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the 1%, 2%, and 4% RUT groups were significantly decreased (P<0.05). Compared with the 4% RUT group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the RUT + Fer-1 group were significantly increased (P<0.05). In the in vivo experiment, compared with the matrix group, the breast tissue histopathological status of the BPL rats in the RUC group was effectively improved, with less dilatation of the mammary ducts and more orderly duct arrangement. No pathological morphology indicative of invasive cancer was observed. Compared with the matrix group, Fe2+ and MDA levels in the mammary tissue of the RUC group were significantly increased (P<0.05). Compared with the matrix group, the protein expression levels of Nrf2, SLC7A11, and GPX4 in the mammary tissue of the RUC group were significantly reduced (P<0.05). ConclusionRUC may induce ferroptosis in BPL cells by inhibiting the Nrf2/SLC7A11/GPX4 signaling pathway, increasing Fe2+ accumulation, and promoting lipid peroxidation.
10.Pharmacological effects of Yindan Pinggan capsules in treating intrahepatic cholestasis
Shu-xin CAO ; Feng HUANG ; Fang WU ; Rong-rong HE
Acta Pharmaceutica Sinica 2025;60(2):417-426
This study aimed to investigate the therapeutic effect of Yindan Pinggan capsules (YDPG) on intrahepatic cholestasis (IHC) through animal experiments, while utilizing network pharmacology and molecular docking techniques to explore its potential mechanisms. Initially, the therapeutic effect of YDPG on an


Result Analysis
Print
Save
E-mail