1.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
2.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
3.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
4.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
5.Association of Rapidly Elevated Plasma Tau Protein With Cognitive Decline in Patients With Amnestic Mild Cognitive Impairment and Alzheimer’s Disease
Che-Sheng CHU ; Yu-Kai LIN ; Chia-Lin TSAI ; Yueh-Feng SUNG ; Chia-Kuang TSAI ; Guan-Yu LIN ; Chien-An KO ; Yi LIU ; Chih-Sung LIANG ; Fu-Chi YANG
Psychiatry Investigation 2025;22(2):130-139
Objective:
Whether elevation in plasma levels of amyloid and tau protein biomarkers are better indicators of cognitive decline than higher baseline levels in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD) remains understudied.
Methods:
We included 67 participants with twice testing for AD-related plasma biomarkers via immunomagnetic reduction (IMR) assays (amyloid beta [Aβ]1-40, Aβ1-42, total tau [t-Tau], phosphorylated tau [p-Tau] 181, and alpha-synuclein [α-Syn]) and the Mini-Mental State Examination (MMSE) over a 1-year interval. We examined the correlation between biomarker levels (baseline vs. longitudinal change) and annual changes in the MMSE scores. Receiver operating characteristic curve analysis was conducted to compare the biomarkers.
Results:
After adjustment, faster cognitive decline was correlated with lower baseline levels of t-Tau (β=0.332, p=0.030) and p-Tau 181 (β=0.369, p=0.015) and rapid elevation of t-Tau (β=-0.330, p=0.030) and p-Tau 181 levels (β=-0.431, p=0.004). However, the levels (baseline and longitudinal changes) of Aβ1-40, Aβ1-42, and α-Syn were not correlated with cognitive decline. aMCI converters had lower baseline levels of p-Tau 181 (p=0.002) but larger annual changes (p=0.001) than aMCI non-converters. The change in p-Tau 181 levels showed better discriminatory capacity than the change in t-Tau levels in terms of identifying AD conversion in patients with aMCI, with an area under curve of 86.7% versus 72.2%.
Conclusion
We found changes in p-Tau 181 levels may be a suitable biomarker for identifying AD conversion.
6.Establishment and application of a rapid high-throughput detection method for Huanglongbing.
Qin YUAN ; Zhi-Peng LI ; Tie-Lin WANG ; Ting DONG ; Yu-Wen YANG ; Wei GUAN ; Ting-Chang ZHAO
China Journal of Chinese Materia Medica 2025;50(7):1735-1740
The dried mature peel of Citrus reticulata, a plant in the Rutaceae family and its cultivated varieties, is a commonly used Chinese medicinal material known as Chenpi(Citri Reticulatae Pericarpium). It is rich in nutritional components and medicinal value, with pharmacological effects including relieving cough and eliminating phlegm, strengthening the spleen and drying dampness, protecting the liver and benefiting the stomach, tonifying Qi, and calming the mind. Huanglongbing(HLB), also known as Citrus Huanglongbing, is a destructive disease in citrus production that seriously threatens the development of the citrus industry. HLB causes symptoms such as the inability of Rutaceae plants to produce mature fruit, gradual weakening of the tree, and eventual death, posing a significant threat to the yield and quality of Chenpi. Due to the uneven distribution of the HLB pathogen in infected plants, accurate detection of the pathogen requires the collection of a large number of plant samples. Current sample pretreatment methods, such as traditional extraction methods and commercial extraction kits, are time-consuming and involve multiple steps, which significantly increase the difficulty and workload of HLB diagnosis and have become a bottleneck in HLB detection. In this study, a rapid high-throughput detection method combining alkali lysis and TaqMan qPCR was developed. This method allows the pretreatment of multiple samples within 5 min, and the entire detection process can be completed within 45 min, with a detection limit of 6.67 fg·μL~(-1). The alkali lysis method and commercial kits were used for parallel detection of field-collected citrus samples, and the results showed no significant difference. The sample pretreatment method established in this study is characterized by low cost, simplicity, and high efficiency. Combined with TaqMan qPCR, it can provide technical support for early and on-site diagnosis of HLB. This method is of great significance for disease prevention and control in the citrus industry and is expected to help improve the yield and quality of citrus medicinal materials.
Citrus/microbiology*
;
Plant Diseases/microbiology*
;
Rhizobiaceae/physiology*
;
High-Throughput Screening Assays/methods*
;
Liberibacter/physiology*
7.Optimized lipid nanoparticles enable effective CRISPR/Cas9-mediated gene editing in dendritic cells for enhanced immunotherapy.
Kuirong MAO ; Huizhu TAN ; Xiuxiu CONG ; Ji LIU ; Yanbao XIN ; Jialiang WANG ; Meng GUAN ; Jiaxuan LI ; Ge ZHU ; Xiandi MENG ; Guojiao LIN ; Haorui WANG ; Jing HAN ; Ming WANG ; Yong-Guang YANG ; Tianmeng SUN
Acta Pharmaceutica Sinica B 2025;15(1):642-656
Immunotherapy has emerged as a revolutionary approach to treat immune-related diseases. Dendritic cells (DCs) play a pivotal role in orchestrating immune responses, making them an attractive target for immunotherapeutic interventions. Modulation of gene expression in DCs using genome editing techniques, such as the CRISPR-Cas system, is important for regulating DC functions. However, the precise delivery of CRISPR-based therapies to DCs has posed a significant challenge. While lipid nanoparticles (LNPs) have been extensively studied for gene editing in tumor cells, their potential application in DCs has remained relatively unexplored. This study investigates the important role of cholesterol in regulating the efficiency of BAMEA-O16B lipid-assisted nanoparticles (BLANs) as carriers of CRISPR/Cas9 for gene editing in DCs. Remarkably, BLANs with low cholesterol density exhibit exceptional mRNA uptake, improved endosomal escape, and efficient single-guide RNA release capabilities. Administration of BLANmCas9/gPD-L1 results in substantial PD-L1 gene knockout in conventional dendritic cells (cDCs), accompanied by heightened cDC1 activation, T cell stimulation, and significant suppression of tumor growth. The study underscores the pivotal role of cholesterol density within LNPs, revealing potent influence on gene editing efficacy within DCs. This strategy holds immense promise for the field of cancer immunotherapy, offering a novel avenue for treating immune-related diseases.
8.Onco-metabolic surgery: the bridge between curative resection of gastric cancer and the remission of type 2 diabetes mellitus
Lyujia CHENG ; Zhenpeng WU ; Yuhan QIAO ; Yunsong JIANG ; Lin XIANG ; Lina WU ; Bingsheng GUAN ; Hanlin TANG ; Shifang HUANG ; Jingge YANG
Chinese Journal of Gastrointestinal Surgery 2024;27(11):1178-1185
The close relationship between gastric cancer (GC) and type 2 diabetes mellitus (T2DM) has garnered significant attention. On one hand, T2DM may play a role in the development and progression of GC, correlating with poor patient outcomes. On the other hand, after radical surgery for GC, T2DM can be effectively managed, potentially improving tumor prognosis. In recent years, bariatric and metabolic surgery (BMS) has revolutionized T2DM treatment for obese and overweight patients. Comparative analyses reveal similarities between surgical approaches for gastric cancer and BMS, leading to the emergence of the onco-metabolic surgery (OMS) concept, which suggests that radical tumor resection and T2DM remission in GC patients can be potentially achieved through a single procedure. However, there are notable differences between OMS and BMS, including target populations, surgical details, and perioperative management. Therefore, optimizing the application of the OMS concept in GC patients holds significant clinical importance. This article provides a review to facilitate the better implementation of this concept in practice.
9.Onco-metabolic surgery: the bridge between curative resection of gastric cancer and the remission of type 2 diabetes mellitus
Lyujia CHENG ; Zhenpeng WU ; Yuhan QIAO ; Yunsong JIANG ; Lin XIANG ; Lina WU ; Bingsheng GUAN ; Hanlin TANG ; Shifang HUANG ; Jingge YANG
Chinese Journal of Gastrointestinal Surgery 2024;27(11):1178-1185
The close relationship between gastric cancer (GC) and type 2 diabetes mellitus (T2DM) has garnered significant attention. On one hand, T2DM may play a role in the development and progression of GC, correlating with poor patient outcomes. On the other hand, after radical surgery for GC, T2DM can be effectively managed, potentially improving tumor prognosis. In recent years, bariatric and metabolic surgery (BMS) has revolutionized T2DM treatment for obese and overweight patients. Comparative analyses reveal similarities between surgical approaches for gastric cancer and BMS, leading to the emergence of the onco-metabolic surgery (OMS) concept, which suggests that radical tumor resection and T2DM remission in GC patients can be potentially achieved through a single procedure. However, there are notable differences between OMS and BMS, including target populations, surgical details, and perioperative management. Therefore, optimizing the application of the OMS concept in GC patients holds significant clinical importance. This article provides a review to facilitate the better implementation of this concept in practice.
10.Influences and mechanism of extracellular vesicles from dermal papilla cells of mice on human hypertrophic scar fibroblasts
Yunwei WANG ; Hao ZHANG ; Peng CAO ; Wanfu ZHANG ; Lin TONG ; Shaohui LI ; Yang CHEN ; Chao HAN ; Hao GUAN
Chinese Journal of Burns 2024;40(3):258-265
Objective:To investigate the influences and mechanism of extracellular vesicles from dermal papilla cells (DPC-EVs) of mice on human hypertrophic scar fibroblasts (HSFs).Methods:The study was an experimental research. The primary dermal papilla cells (DPCs) of whiskers were extracted from 10 6-week-old male C57BL/6J mice and identified successfully. The DPC-EVs were extracted from the 3 rd to 5 th passage DPCs by ultracentrifugation, and the morphology was observed through transmission electron microscope and the particle diameter was detected by nanoparticle tracking analyzer ( n=3) at 24 h after culture. The 3 rd passage of HSFs were divided into DPC-EV group and phosphate buffer solution (PBS) group, which were cultured with DPC-EVs and PBS, respectively. The cell scratch test was performed and cell migration rate at 24 h after scratching was calculated ( n=5). The cell proliferation levels at 0 (after 12 h of starvation treatment and before adding DPC-EVs or PBS), 24, 48, 72, and 96 h after culture were detected by using cell counting kit 8 ( n=4). The protein expressions of α-smooth muscle actin (α-SMA) and collagen typeⅠ (ColⅠ) in cells at 24 h after culture were detected by immunofluorescence method and Western blotting, and the protein expression of Krüppel-like factor 4 (KLF4) in cells at 24 h after culture was detected by Western blotting. After the 3 rd passage of HSFs were cultured with DPC-EVs for 24 h, the cells were divided into blank control group, KLF4 knockdown group, and KLF4 overexpression group according to the random number table. The cells in blank control group were only routinely cultured for 48 h. The cells in KLF4 knockdown group and KLF4 overexpression group were incubated with KLF4 knockdown virus for 24 h, then the cells in KLF4 knockdown group were routinely cultured for 24 h while the cells in KLF4 overexpression group were incubated with KLF4 overexpression virus for 24 h. The protein expressions of KLF4, α-SMA, and ColⅠ in cells were detected by Western blotting at 48 h after culture. Results:At 24 h after culture, the extracted DPC-EVs showed vesicular structure with an average particle diameter of 108.8 nm. At 24 h after scratching, the migration rate of HSFs in PBS group was (54±10)%, which was significantly higher than (29±8)% in DPC-EV group ( t=4.37, P<0.05). At 48, 72, and 96 h after culture, the proliferation levels of HSFs in DPC-EV group were significantly lower than those in PBS group (with t values of 4.06, 5.76, and 6.41, respectively, P<0.05). At 24 h after culture, the protein expressions of α-SMA and ColⅠ of HSFs in DPC-EV group were significantly lower than those in PBS group, while the protein expression of KLF4 was significantly higher than that in PBS group. At 48 h after culture, compared with those in blank control group, the protein expression of KLF4 of HSFs in KLF4 knockdown group was down-regulated, while the protein expressions of α-SMA and ColⅠ were both up-regulated; compared with those in KLF4 knockdown group, the protein expression of KLF4 of HSFs in KLF4 overexpression group was up-regulated, while the protein expressions of ColⅠ and α-SMA were down-regulated. Conclusions:The DPC-EVs of mice can inhibit the proliferation and migration of human HSFs and significantly inhibit the expressions of fibrosis markers α-SMA and ColⅠ in human HSFs by activating KLF4.

Result Analysis
Print
Save
E-mail