1.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
2.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
3.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
4.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
5.Integrated Optical and Magnetic Navigation for Simplified Percutaneous Transforaminal Endoscopic Lumbar Discectomy: A Novel Approach
Xing-Chen YAO ; Jun-Peng LIU ; Xin-Ru DU ; Li GUAN ; Yong HAI ; Jincai YANG ; Aixing PAN
Neurospine 2025;22(1):297-307
Objective:
This study aims to evaluate the clinical benefits of the integrated optical and magnetic surgical navigation system in assisting transforaminal endoscopic lumbar discectomy (TELD) for the treatment of lumbar disc herniation (LDH).
Methods:
A retrospective analysis was conducted on patients who underwent TELD for LDH at Beijing Chaoyang Hospital, Capital Medical University from November 2022 to December 2023. Patients treated with the integrated optical and magnetic surgical navigation system were defined as the navigation-guided TELD (Ng-TELD) group (30 cases), while those treated with the conventional x-ray fluoroscopy method were defined as the control group (31 cases). Record and compare baseline characteristics, surgical parameters, efficacy indicators, and adverse events between the 2 patient groups.
Results:
The average follow-up duration for the 61 patients was 11.8 months. Postoperatively, both groups exhibited significant relief from back and leg pain, which continued to improve over time. At the final follow-up, patients’ lumbar function and quality of life had significantly improved compared to preoperative levels (p < 0.05). The Ng-TELD group had significantly shorter total operation time (58.43 ± 12.37 minutes vs. 83.23 ± 25.90 minutes), catheter placement time (5.83 ± 1.09 minutes vs. 15.94 ± 3.00 minutes), decompression time (47.17 ± 11.98 minutes vs. 67.29 ± 24.23 minutes), and fewer intraoperative fluoroscopies (3.20 ± 1.45 vs. 16.58 ± 4.25) compared to the control group (p < 0.05). There were no significant differences between the groups in terms of efficacy evaluation indicators and hospital stay. At the final follow-up, the excellent and good rate of surgical outcomes assessed by the MacNab criteria was 98.4%, and the overall adverse event rate was 8.2%, with no statistically significant differences between the groups (p > 0.05).
Conclusion
This study demonstrates that the integrated optical and magnetic surgical navigation system can reduce the complexity of TELD, shorten operation time, and minimize radiation exposure for the surgeon, highlighting its promising clinical potential.
6.Protective effect and mechanism of Icariin on oxidative stress injury in neurons
Yu-Meng DU ; Si-Min YANG ; Xiao-Tong QIN ; Yan LI ; Rui-Jun JU ; Xiao-Ming PENG ; Xiao-Qiang YAN ; Jie GUAN ; Ling-Yue MA
The Chinese Journal of Clinical Pharmacology 2024;40(13):1869-1873
Objective To explore the protective mechanism of icariin on neuronal oxidative damage,providing a basic pharmacological basis for the treatment of cognitive impairment.Methods Glutamate was used to induce oxidative stress injury in HT22 cells.HT22 cells were divided into control group(normal cultured cells),model group(glutamate injury model)and experimental-L,-M,-H groups(5,10 and 20 μmol·L-1 icariin pretreatment for modeling,respectively).Cell proliferation was detected by cell counting kit-8(CCK-8)method;cytotoxicity was detected by lactate dehydrogenase(LDH)method;reactive oxygen species(ROS)levels were detected by flow cytometry;superoxide dismutase(SOD)levels were detected by biochemical kits;the expression levels of Kelch-like epichlorohydrin-related protein-1(Keap1),nuclear factor E2-related factor 2(Nrf2)were detected by Western blotting;the corresponding mRNA expression was detected by real-time fluorescence quantification polymerose chain reaction.Results The cell viability of control group,model group and experimental-L,-M,-H groups were(100.00±1.31)%,(66.38±2.44)%,(72.07±4.95)%,(82.41±3.57)%and(87.97±4.98)%;LDH release were(0.48±0.52)%,(18.82±2.09)%,(15.32±1.17)%,(10.37±1.39)%and(6.51±0.87)%;ROS level were(14.23±1.13)%,(41.74±1.60)%,(35.69±1.08)%,(33.28±1.69)%and(30.32±2.03)%;SOD levels were(54.84±1.17),(37.95±1.13),(48.02±1.28),(50.56±1.34)and(52.55±1.04)U·mg-1;Keap1 protein levels were 0.36±0.01,0.52±0.03,0.46±0.04,0.39±0.09 and 0.35±0.12;Nrf2 protein levels were 0.29±0.02,0.13±0.08,0.18±0.03,0.21±0.11 and 0.26±0.04;catalase(CAT)mRNA levels were 1.01±0.08,0.81±0.06,0.90±0.04,1.05±0.15 and 1.33±0.26;SOD mRNA levels were 1.09±0.12,0.83±0.03,0.86±0.08,0.94±0.08 and 1.09±0.16.Among the above indicators,the differences between the model group and the control group were statistically significant(all P<0.01);the differences between the experimental-M,-H groups and the model group were statistically significant(P<0.01,P<0.05).Conclusion Icariin may activate the Keap1/Nrf2/antioxidant response element(ARE)signaling pathway,regulate the expression of related proteins,and reduce the level of ROS to effectively alleviate oxidative stress injury in neuronal cells.
7.Investigation on efficacy against hepatocellular carcinoma of novel antisense oligonucleotide targeting IGF1R mRNA encapsulated with neutral cytidinyl/cationic lipid in vitro
Yang PU ; Jing GUAN ; Qian-yi HE ; Yue-jie ZHU ; De-lin PAN ; Zhu GUAN ; Zhen-jun YANG
Acta Pharmaceutica Sinica 2024;59(5):1441-1448
Antisense oligonucleotides are a type of gene therapy that targets mRNA and inhibits gene expression. They have been applied in the treatment of various diseases, but there are still problems with poor enzyme stability and high dosage
8.Rigid-body inverse dynamics modelling and analysis of 6RSS parallel bio-inspired masticatory robot
Chen CHENG ; Xiao-Jing YUAN ; Neng-Jun YANG ; Gen-Liang HOU ; Fan-Qi ZENG ; You-Cai WANG ; Wei-Peng LUO ; Guan ZHAO
Chinese Medical Equipment Journal 2024;45(3):16-22
Objective To carry out rigid-body inverse dynamics modelling and analysis of a self-designed 6RSS parallel bio-inspired masticatory robot.Methods Firstly,the functions of kinematic variables including translational/rotational velocities and accelerations were derived for rigid-body inverse dynamics modelling.Secondly,the rigid-body inverse dynamics model was established with the Newton-Euler's law.Finally,the chewing motion trajectories of the oral health volunteers were tracked and numerical calculations were carried out in the case where the robot was subjected to a chewing reaction force.Results Numerical calculations showed that the driving torque and the constraint force of the robot peaked when the chewing reaction force was at its maximum.Conclusion The external force has a large impact on the inverse dynamics of the robot,and theoretical references are provided for the motion control and optimal design of the robot.[Chinese Medical Equipment Journal,2024,45(3):16-22]
9.Emerging role of Jumonji domain-containing protein D3 in inflammatory diseases
Li XIANG ; Chen RU-YI ; Shi JIN-JIN ; Li CHANG-YUN ; Liu YAN-JUN ; Gao CHANG ; Gao MING-RONG ; Zhang SHUN ; Lu JIAN-FEI ; Cao JIA-FENG ; Yang GUAN-JUN ; Chen JIONG
Journal of Pharmaceutical Analysis 2024;14(9):1282-1300
Jumonji domain-containing protein D3(JMJD3)is a 2-oxoglutarate-dependent dioxygenase that specif-ically removes transcriptional repression marks di-and tri-methylated groups from lysine 27 on histone 3(H3K27me2/3).The erasure of these marks leads to the activation of some associated genes,thereby influencing various biological processes,such as development,differentiation,and immune response.However,comprehensive descriptions regarding the relationship between JMJD3 and inflammation are lacking.Here,we provide a comprehensive overview of JMJD3,including its structure,functions,and involvement in inflammatory pathways.In addition,we summarize the evidence supporting JMJD3's role in several inflammatory diseases,as well as the potential therapeutic applications of JMJD3 inhibitors.Additionally,we also discuss the challenges and opportunities associated with investigating the functions of JMJD3 and developing targeted inhibitors and propose feasible solutions to provide valuable insights into the functional exploration and discovery of potential drugs targeting JMJD3 for inflammatory diseases.
10.Magnesium lithospermate B enhances the potential of human-induced pluripotent stem cell-derived cardiomyocytes for myocardial repair
Chengming FAN ; Kele QIN ; Daniel Chukwuemeka IROEGBU ; Kun XIANG ; Yibo GONG ; Qing GUAN ; Wenxiang WANG ; Jun PENG ; Jianjun GUO ; Xun WU ; Jinfu YANG
Chinese Medical Journal 2024;137(15):1857-1869
Background::We previously reported that activation of the cell cycle in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) enhances their remuscularization capacity after human cardiac muscle patch transplantation in infarcted mouse hearts. Herein, we sought to identify the effect of magnesium lithospermate B (MLB) on hiPSC-CMs during myocardial repair using a myocardial infarction (MI) mouse model.Methods::In C57BL/6 mice, MI was surgically induced by ligating the left anterior descending coronary artery. The mice were randomly divided into five groups ( n = 10 per group); a MI group (treated with phosphate-buffered saline only), a hiPSC-CMs group, a MLB group, a hiPSC-CMs + MLB group, and a Sham operation group. Cardiac function and MLB therapeutic efficacy were evaluated by echocardiography and histochemical staining 4 weeks after surgery. To identify the associated mechanism, nuclear factor (NF)-κB p65 and intercellular cell adhesion molecule-1 (ICAM1) signals, cell adhesion ability, generation of reactive oxygen species, and rates of apoptosis were detected in human umbilical vein endothelial cells (HUVECs) and hiPSC-CMs. Results::After 4 weeks of transplantation, the number of cells that engrafted in the hiPSC-CMs + MLB group was about five times higher than those in the hiPSC-CMs group. Additionally, MLB treatment significantly reduced tohoku hospital pediatrics-1 (THP-1) cell adhesion, ICAM1 expression, NF-κB nuclear translocation, reactive oxygen species production, NF-κB p65 phosphorylation, and cell apoptosis in HUVECs cultured under hypoxia. Similarly, treatment with MLB significantly inhibited the apoptosis of hiPSC-CMs via enhancing signal transducer and activator of transcription 3 (STAT3) phosphorylation and B-cell lymphoma-2 (BCL2) expression, promoting STAT3 nuclear translocation, and downregulating BCL2-Associated X, dual specificity phosphatase 2 (DUSP2), and cleaved-caspase-3 expression under hypoxia. Furthermore, MLB significantly suppressed the production of malondialdehyde and lactate dehydrogenase and the reduction in glutathione content induced by hypoxia in both HUVECs and hiPSC-CMs in vitro. Conclusions::MLB significantly enhanced the potential of hiPSC-CMs in repairing injured myocardium by improving endothelial cell function via the NF-κB/ICAM1 pathway and inhibiting hiPSC-CMs apoptosis via the DUSP2/STAT3 pathway.

Result Analysis
Print
Save
E-mail