1.Protective effects of estrogens and caloric restriction during aging on various rat testis parameters.
Khaled HAMDEN ; Dorothee SILANDRE ; Christelle DELALANDE ; Abdelfattah ELFEKI ; Serge CARREAU
Asian Journal of Andrology 2008;10(6):837-845
AIMTo investigate the effects of 17beta-estradiol (E2), Peganum harmala extract (PHE) and caloric restriction (CR) on various testis parameters during aging.
METHODSTwelve month-old male rats were treated for 6 months with either E2 or PHE, or submitted to CR (40%).
RESULTSOur results show that estrogens and CR are able to protect the male gonad by preventing the decrease of testosterone and E2 levels as well as the decrease of aromatase and estrogen receptor gene expressions. Indeed, E2, PHE and CR treatments induced an increase in the superoxide dismutase activities and decreased the activity of testicular enzymes: gamma-glutamyl transferase, alkaline phosphatase, lactate deshydrogenase as well as the aspartate and lactate transaminases in aged animals. In addition, the testicular catalase and gluthatione peroxidase activities were enhanced in E2, PHE and CR-treated rats compared to untreated animals at 18 months of age. Moreover, the positive effects of estradiol, PHE and CR were further supported by a lower level of lipid peroxidation. Recovery of spermatogenesis was recorded in treated rats.
CONCLUSIONBesides a low caloric diet which is beneficial for spermatogenesis, a protective antioxydant role of estrogens is suggested. Estrogens delay testicular cell damage, which leads to functional senescence and, therefore, estrogens are helpful in protecting the reproductive functions from the adverse effects exerted by reactive oxygen species (ROS) produced in large quantities in the aged testis.
Aging ; physiology ; Animals ; Antioxidants ; metabolism ; Aromatase ; biosynthesis ; genetics ; Caloric Restriction ; Estradiol ; metabolism ; pharmacology ; Estrogens ; pharmacology ; Lipid Peroxidation ; drug effects ; Male ; Oxidative Stress ; drug effects ; Peganum ; chemistry ; Plant Extracts ; pharmacology ; RNA ; biosynthesis ; genetics ; Rats ; Rats, Wistar ; Receptors, Estrogen ; biosynthesis ; genetics ; Testis ; drug effects ; enzymology ; growth & development ; Testosterone ; metabolism ; Thiobarbituric Acid Reactive Substances ; metabolism
2.Signaling pathway for 2,3,7,8-tetrachlorodibenzo- p-dioxin-induced TNF-alpha production in differentiated THP-1 human macrophages.
Hyeon Joo CHEON ; Young Seok WOO ; Ji Young LEE ; Hee Sook KIM ; Hyun Jin KIM ; Sungwon CHO ; Nam Hee WON ; Jeongwon SOHN
Experimental & Molecular Medicine 2007;39(4):524-534
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a prototypic halogenated aromatic hydrocarbon (HAH), is known as one of the most potent toxicants. At least a part of its toxic effects appears to be derived from its ability to induce TNF-alpha production. However, the signaling pathway of TCDD that leads to TNF-alpha expression has not been elucidated. In this study, we investigated the signaling mechanism of TCDD-induced TNF-alpha expression in PMA-differentiated THP-1 macrophages. TCDD induced both mRNA and protein expression of TNF-alpha in a dose- and time-dependent manner. Alpha-Naphthoflavone (NF), an aryl hydrocarbon receptor (AhR) inhibitor, prevented the TCDD-induced expression of TNF-alpha at both mRNA and protein levels. Genistein, a protein tyrosine kinase (PTK) inhibitor, and PD153035, an EGFR inhibitor, also blocked the increase of TNF-alpha expression by TCDD, indicating the role of EGFR in TCDD-induced TNF-alpha expression. On the other hand, PP2, a c-Src specific inhibitor, did not affect TCDD-induced TNF-alpha expression. EGFR phosphorylation was detected as early as 5 min after TCDD treatment. TCDD-induced EGFR activation was AhR-dependent since co-treatment with alpha-NF prevented it. ERK was found to be a downstream effector of EGFR activation in the signaling pathway leading to TNF-alpha production after TCDD stimulation. Activation of ERK was observed from 30 min after TCDD treatment. PD98059, an inhibitor of the MEK-ERK pathway, completely prevented the TNF-alpha mRNA and protein expression induced by TCDD, whereas inhibitors of JNK and p38 MAPK had no effect. PD153035, an EGFR inhibitor, as well as alpha-NF significantly reduced ERK phosphorylation, suggesting that ERK activation by TCDD was mediated by both EGFR and AhR. These results indicate that TNF-alpha production by TCDD in differentiated THP-1 macrophages is AhR-dependent and involves activation of EGFR and ERK, but not c-Src, JNK, nor p38 MAPK. A signaling pathway is proposed where TCDD induces sequential activation of AhR, EGFR and ERK, leading to the increased expression of TNF-alpha.
Animals
;
Benzoflavones/pharmacology
;
Cell Differentiation
;
Cell Line, Tumor
;
Enzyme Activation
;
Genistein/pharmacology
;
Hazardous Substances/*toxicity
;
Humans
;
MAP Kinase Signaling System/drug effects/physiology
;
Macrophages/*metabolism
;
Mice
;
Phosphorylation
;
Pyrimidines/pharmacology
;
Quinazolines/pharmacology
;
RNA, Messenger/metabolism
;
Receptor, Epidermal Growth Factor/antagonists & inhibitors/metabolism
;
Receptors, Aryl Hydrocarbon/antagonists & inhibitors
;
Signal Transduction
;
Tetrachlorodibenzodioxin/*toxicity
;
Tumor Necrosis Factor-alpha/*biosynthesis
;
src-Family Kinases/antagonists & inhibitors/metabolism
3.Segment boundaries of the adult rat epididymis limit interstitial signaling by potential paracrine factors and segments lose differential gene expression after efferent duct ligation.
Terry T TURNER ; Daniel S JOHNSTON ; Scott A JELINSKY ; Jose L TOMSIG ; Joshua N FINGER
Asian Journal of Andrology 2007;9(4):565-573
The epididymis is divided into caput, corpus and cauda regions, organized into intraregional segments separated by connective tissue septa (CTS). In the adult rat and mouse these segments are highly differentiated. Regulation of these segments is by endocrine, lumicrine and paracrine factors, the relative importance of which remains under investigation. Here, the ability of the CTS to limit signaling in the interstitial compartment is reviewed as is the effect of 15 days of unilateral efferent duct ligation (EDL) on ipsilateral segmental transcriptional profiles. Inter-segmental microperifusions of epidermal growth factor (EGF), vascular endothelial growth factor (VEGFA) and fibroblast growth factor 2 (FGF2) increased phosphorylation of mitogen activated protein kinase (MAPK) in segments 1 and 2 of the rat epididymis and the effects of all factors were limited by the CTS separating the segments. Microarray analysis of segmental gene expression determined the effect of 15 days of unilateral EDL on the transcriptome-wide gene expression of rat segments 1-4. Over 11,000 genes were expressed in each of the four segments and over 2000 transcripts in segment 1 responded to deprivation of testicular lumicrine factors. Segments 1 and 2 of control tissues were the most transcriptionally different and EDL had its greatest effects there. In the absence of lumicrine factors, all four segments regressed to a transcriptionally undifferentiated state, consistent with the less differentiated histology. Deprivation of lumicrine factors could stimulate an individual gene's expression in some segments yet suppress it in others. Such results reveal a higher complexity of the regulation of rat epididymal segments than that is generally appreciated.
Animals
;
Ejaculatory Ducts
;
physiology
;
Epididymis
;
drug effects
;
physiology
;
Gene Expression Regulation
;
drug effects
;
Growth Substances
;
pharmacology
;
Male
;
Mice
;
Rats
;
Reverse Transcriptase Polymerase Chain Reaction
;
Signal Transduction
4.CKbeta8-1 alters expression of cyclin E in colony forming units-granulocyte macrophage (CFU-GM) lineage from human cord blood CD34 + cells.
Eui Kyu NOH ; Jae Sun RA ; Seong Ae LEE ; Byoung S KWON ; In Seob HAN
Experimental & Molecular Medicine 2005;37(6):619-623
A C6 beta-chemokine, CKbeta8-1, suppressed the colony formation of CD34 + cells of human cord blood (CB). Molecular mechanisms involved in CKbeta8-1-medicated suppression of colony formation of CD34 + cells are not known. To address this issue, the level of various G1/S cell cycle regulating proteins in CKbeta8-1-treated CD34 + cells were compared with those in untreated CD34 + cells. CKbeta8-1 did not significantly alter the expression of the G1/S cycle regulation proteins (cyclin D1, D3, and E), CDK inhibitor (p27and Rb), and other cell proliferation regulation protein (p53) in CB CD34 + cells. Here we describe an in vitro system in which CB CD34 + cells were committed to a multipotent progenitor lineage of colony forming units-granulocyte/macrophage (CFU-GM) by a simple combination of recombinant human (rh) GM-CSF and rhIL-3. In this culture system, we found that cyclin E protein appeared later and disappeared faster in the CKbeta8-1-treated cells than in the control cells during CFU-GM lineage development. These findings suggested that cyclin E may play a role in suppressing the colony formation of CFU-GM by CKbeta8-1.
Antigens, CD34/metabolism
;
Cell Cycle Proteins/metabolism
;
Cell Lineage
;
Cells, Cultured
;
Chemokines, CC/*pharmacology
;
Cyclin E/*metabolism
;
Fetal Blood/*cytology
;
G1 Phase/drug effects
;
Gene Expression Regulation/*drug effects
;
Granulocytes/cytology/*drug effects/metabolism
;
Growth Substances/pharmacology
;
Humans
;
Macrophages/cytology/*drug effects/metabolism
;
Research Support, Non-U.S. Gov't
;
Stem Cells/cytology/*drug effects/metabolism
5.Protective effects of shark hepatic stimulator substance against acute hepatic injury induced by acetaminophen in mice.
Zheng-bing LÜ ; Qian LI ; Bo-ping YE ; Shan BIAN ; Ying WANG ; Qi-ping RUAN ; Wu-tong WU
Acta Pharmaceutica Sinica 2004;39(1):17-21
AIMTo investigate the protective effects of shark hepatic stimulator substance (sHSS) against acute hepatic injury induced by acetaminophen (AAP) in mice.
METHODSAcute hepatic injury model of Balb/c mice was induced by a single intraperitoneal injection of AAP (200 mg.kg-1, i.p.). Serum ALT and AST activities were analyzed. The changes of microstructure and ultrastructure of hepatocyte were observed under optical and electronic microscope. The hepatocyte apoptosis was analyzed by flow cytometer and the expression level of Fas mRNA was determined by RT-PCR.
RESULTSThe activities of serum ALT and AST were significantly decreased and both necrosis and inflammatory infiltration were improved in the mice treated with sHSS 3.0 and 1.5 mg.kg-1. sHSS (3.0 mg.kg-1) prevented the ultrastructural changes of hepatocytes caused by AAP, decreased the percentage of apoptotic cells, and downregulated the expression level of Fas mRNA.
CONCLUSIONsHSS protected hepatocytes from AAP-induced injury, which might be associated with its protection of the mitochondria and inhibition of apoptosis and expression of Fas mRNA in hepatocytes.
Acetaminophen ; Animals ; Apoptosis ; drug effects ; Chemical and Drug Induced Liver Injury ; etiology ; pathology ; Female ; Growth Substances ; isolation & purification ; pharmacology ; Mice ; Mice, Inbred BALB C ; Peptides ; isolation & purification ; pharmacology ; Protective Agents ; pharmacology ; RNA, Messenger ; genetics ; Random Allocation ; Sharks ; fas Receptor ; biosynthesis ; genetics
6.Characteristics of tenocyte adhesion to biologically-modified surface of polymer.
Tingwu QIN ; Zhiming YANG ; Huiqi XIE ; Hong LI ; Jian QIN ; Zezhi WU ; Shirong XU ; Shaoxi CAI
Journal of Biomedical Engineering 2002;19(4):633-638
In this study we examined the in vitro characteristics of tenocyte adhesion to biologically-modified surface of polymer. Polylactic-co-glycolic acid (PLGA) 85/15 films were prepared by a solvent-casting technique. Each film was adhered onto the bottom of a chamber. The film was precoated with poly-D-lysine (PDL), and then coated with serum-free F12 medium containing various concentrations of fibronectin (FN), type I collagen (CN I), and insulin-like growth factor1 (IGF-1). The monoclonal antibodies (to FN and to CN I) with various dilutions were used to inhibit attachment of tenocytes to surface precoated with FN or CN I. Human embryonic tendon cells (HETCs) and transformed human embryonic tendon cells (THETCs) were used as the seeding cells. The system used for the measurement of adhesion force was the micropipette aspiration experiment system. The micropipette was manipulated to aspirate a small portion of the tenocyte body by using a small aspiration pressure. Then the pipette was pulled away from the adhesion area by micromanipulation. The minimum force required to detach the tenocyte from the substrate was defined as the adhesion force. The results showed that modification of FN or CN I by precoating significantly enhanced attachment of tenocytes to surface of polymer (P < 0.05). As antibodies to FN or CN I were added to a polymer film precoated with FN or CN I, the adhesion force decreased significantly (P < 0.05). We concluded that the specific adhesion forces of tenocytes to extracellular matrix adhesion proteins (FN and CN I) had coordinated action and showed good dependence on their precoating concentrations, and were inhibited by the antibodies to these adhesion proteins. Films precoated with IGF-1 strongly accelerated the adhesion of tenocytes to polymer. These results indicate that the specific adhesion of tenocytes to polymer can be promoted by coating extracellular matrix adhesive proteins and insulin-like growth factor1. It is of great importance to construct tissue-engineered tendon.
Biocompatible Materials
;
chemistry
;
Cell Adhesion
;
drug effects
;
physiology
;
Cells, Cultured
;
Extracellular Matrix Proteins
;
pharmacology
;
Growth Substances
;
pharmacology
;
Humans
;
Lactic Acid
;
chemistry
;
Polyglycolic Acid
;
chemistry
;
Polylysine
;
pharmacology
;
Polymers
;
chemistry
;
Tendons
;
cytology
;
embryology
;
physiology
;
Tissue Engineering
7.Prokaryotic expression and purification of human hepatic stimulator substance.
Hai-Jun DU ; Hong-Liu SUN ; Li CHEN ; Wei AN
Acta Physiologica Sinica 2002;54(1):23-27
To explore the possibility of prokaryotic expression of human hepatic stimulator substance (hHSS), hHSS gene was inserted in the downstream of glutathion S-transferase (GST) in a pET-42a expression vector and recombinant GST-hHSS fusion protein was expressed under IPTG induction in BL-21(DE3) cells. The recombinant HSS was purified with His.Tag affinity chromatography, and its bioactivity was analyzed. The results showed that GST-hHSS fusion protein was expressed both as a soluble or a inclusive body in bacterial cytosol. The soluble GST-hHSS expression reached up to 30% of the whole soluble protein of bacteria as determined by densitometry. The cleavage of GST-hHSS fusion protein with Factor Xa produced two fragments of the protein, which sized 33 and 15 kD, respectively. The molecular weight of recombinant HSS protein was identical to theoretical deduction based on the DNA sequences. The protein homology of 15 kD hHSS could be efficiently eluted out after Factor Xa cleavage. It is further indicated that the recombinant hHSS is able to proliferate hepatoma cells of BEL-7402 in the preliminary experiments.
Cell Division
;
drug effects
;
Gene Expression
;
Glutathione Transferase
;
genetics
;
Growth Substances
;
genetics
;
isolation & purification
;
pharmacology
;
Humans
;
Peptides
;
genetics
;
isolation & purification
;
pharmacology
;
Recombinant Fusion Proteins
;
genetics
;
isolation & purification
;
pharmacology
;
Tumor Cells, Cultured
8.Ideal concentration of growth factors in rabbit's flexor tendon culture.
Ho Jung KANG ; Eung Shick KANG
Yonsei Medical Journal 1999;40(1):26-29
Growth factors have the ability to stimulate matrix synthesis and cell proliferation in rabbit flexor tendon. Maximal stimulation effects of growth factors have a wide variation. It depends upon the different anatomic sites of the tendon segment, the kinds of growth factor, the concentration of growth factors, and the time sequence. Since proliferation was an early component of intrinsic tendon healing, we investigated the short-term dose response to four different growth factors on in vitro rabbit's tendon culture. We evaluated the effects according to the various concentrations of recombinant human insulin-like growth factor 1 (IGF), recombinant human epidermal growth factor (EGF), fibroblast growth factor (FGF), and recombinant human platelet-derived growth factor-BB (PDGF). Fetal calf serum was the most potent stimulator of cell proliferation and protein synthesis in in vitro rabbit's tendon culture. Matrix synthesis and cell proliferation were stimulated dose-dependently by IGF between the doses of 50 and 150 ng/ml. The maximum mitogenic effect of EGF was observed at the concentration of 100 ng/ml (1.3 times more than the media-only control culture). The rabbit's tendon responded significantly dose-dependently to PDGF, whereas there was no significant response to FGF.
Animal
;
Cell Division/drug effects
;
Dose-Response Relationship, Drug
;
Growth Substances/pharmacology*
;
Organ Culture
;
Proteins/biosynthesis
;
Rabbits
;
Tendons/metabolism
;
Tendons/drug effects*
;
Tendons/cytology
9.Angiotensin II stimulates proliferation of adventitial fibroblasts cultured from rat aortic explants.
Duk Kyung KIM ; Jeong Eun HUH ; Sang Hoon LEE ; Kyung Pyo HONG ; Jeong Euy PARK ; Jung Don SEO ; Won Ro LEE
Journal of Korean Medical Science 1999;14(5):487-496
It has been proposed that the local renin-angiotensin system is activated in the adventitia after vascular injury. However, the physiological role of Angiotensin II (Ang II) in the adventitia has not been studied at a cellular level. This study was designed to assess the role of Ang II in the growth response of cultured adventitial fibroblasts (AFs). Adventitial explants of the rat thoracic aorta showed outgrowth of AFs within 5-7 days. Ang II caused hyperplastic response of AF cultures. The Ang II-induced mitogenic response of AFs was mediated primarily by the AT1 receptor. Ang II caused a rapid induction of immediate early genes (c-fos, c-myc and jun B). Induction of c-fos expression was fully blocked by an AT1 receptor antagonist but not by an AT2 receptor antagonist. Epidermal growth factor (EGF), platelet-derived growth factor-BB (PDGF-BB) and basic fibroblast growth factor (bFGF) induced DNA synthesis in AFs. Co-stimulation of AFs with the growth factors and Ang II potentiated the incorporation of 3H-thymidine into DNA. Results from this study indicate that Ang II causes mitogenesis of AFs via AT1 receptor stimulation and potentiates the responses to other mitogens. These data suggest that the Ang II may play an important role in regulating AF function during vascular remodeling following arterial injury.
Angiotensin II/metabolism*
;
Animal
;
Aorta/pathology
;
Blotting, Northern
;
Cell Division
;
Cells, Cultured
;
DNA/biosynthesis
;
Fibroblasts/pathology
;
Fibroblasts/metabolism*
;
Gene Expression/physiology
;
Genes, Immediate-Early/genetics
;
Growth Substances/metabolism*
;
Hyperplasia/metabolism
;
Losartan/pharmacology
;
Male
;
Proto-Oncogenes/genetics
;
RNA/biosynthesis
;
Rats
;
Rats, Sprague-Dawley
;
Receptors, Angiotensin/antagonists & inhibitors
10.Effects of interleukin-10 on chemokine KC gene expression by mouse peritoneal macrophages in response to Candida albicans.
Hee Sun KIM ; Dong Hoon SHIN ; Sung Kwang KIM
Journal of Korean Medical Science 1999;14(5):480-486
Chemokine KC has been considered to be a murine homologue of human GRO/MGSA and was identified as chemoattractant for monocytes and neutrophils. This study examined the expression of KC mRNA in thioglycollate-elicited mouse peritoneal macrophages that were stimulated in vitro with Candida albicans (CA). Also examined were the inhibitory effects of IL-10 on the CA-induced expression of KC gene by Northern blot analysis. CA was found to induce chemokine gene expression in a gene-specific manner, CXC chemokine IP-10 mRNA expression was not detected in CA-stimulated macrophages. Maximum KC mRNA expression was observed approximately 2 hr after adding CA. The inhibitory action of IL-10 to CA-induced KC mRNA expression on mouse peritoneal macrophages was independent on concentration and stimulation time of IL-10 and was observed approximately one hour after adding IL-10 and CA simultaneously. IL-10 produced a decrease in the stability of KC mRNA, and CA-stimulated macrophages with cycloheximide blocked the suppressive effect of IL-10. These results suggest that CA also induces chemokine KC from macrophages, and IL-10 acts to destabilize CA-induced KC mRNA and de novo synthesis of an intermediate protein is a part of the IL-10 suppressive mechanism.
Animal
;
Blotting, Northern
;
Candida albicans/metabolism*
;
Cells, Cultured
;
Chemotactic Factors/genetics*
;
Dactinomycin/pharmacology
;
Dose-Response Relationship, Drug
;
Gene Expression Regulation/drug effects*
;
Growth Substances/genetics*
;
Interleukin-10/pharmacology*
;
Interleukin-10/metabolism
;
Macrophages/physiology*
;
Mice
;
Mice, Inbred BALB C
;
Nucleic Acid Synthesis Inhibitors/pharmacology
;
RNA, Messenger/metabolism
;
RNA, Messenger/drug effects

Result Analysis
Print
Save
E-mail