1.Construction of fluorescent transgenic zebrafish Tg (ttn.2: EGFP).
Jiale CHEN ; Qiuxiang CAO ; Hui CAO ; Xiangding CHEN ; Yun DENG
Chinese Journal of Biotechnology 2023;39(4):1804-1814
		                        		
		                        			
		                        			In order to develop a transgenic zebrafish line with green fluorescent protein (enhanced green fluorescent protein, EGFP) expressed specifically in muscle and heart, the recombinant expression vector constructed using the zebrafish ttn.2 gene promoter fragment and EGFP gene coding sequence and the capped mRNA of Tol2 transposase were co-injected into the zebrafish 1-cell stage embryos. The stable genetic Tg (ttn.2: EGFP) transgenic zebrafish line was successfully developed by fluorescence detection, followed by genetic hybridization screening and molecular identification. Fluorescence signals and whole-mount in situ hybridization showed that EGFP expression was located in muscle and heart, the specificity of which was consistent with the expression of ttn.2 mRNA. Inverse PCR showed that EGFP was integrated into chromosomes 4 and 11 of zebrafish in No. 33 transgenic line, while integrated into chromosome 1 in No. 34 transgenic line. The successful construction of this fluorescent transgenic zebrafish line, Tg (ttn.2: EGFP), laid a foundation for the research of muscle and heart development and related diseases. In addition, the transgenic zebrafish lines with strong green fluorescence can also be used as a new ornamental fish.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Zebrafish/genetics*
		                        			;
		                        		
		                        			Animals, Genetically Modified/genetics*
		                        			;
		                        		
		                        			Green Fluorescent Proteins/metabolism*
		                        			;
		                        		
		                        			Zebrafish Proteins/genetics*
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			
		                        		
		                        	
2.Establishment of a microtubule-fluorescent fusion protein mosaically labeled zebrafish motor neuron system.
Fang YUAN ; Pei-Pei QIAN ; Xin WANG ; Jia-Jing SHENG ; Dong LIU ; Jie GONG
Acta Physiologica Sinica 2022;74(3):411-418
		                        		
		                        			
		                        			Motor neurons are an important type of neurons that control movement. The transgenic fluorescent protein (FP)-labeled motor neurons of zebrafish line is disadvantageous for studying the morphogenesis of motor neurons. For example, the individual motor neuron is indistinguishable in this transgenic line due to the high density of the motor neurons and the interlaced synapses. In order to optimize the in vivo imaging methods for the analysis of motor neurons, the present study was aimed to establish a microtubule-fluorescent fusion protein mosaic system that can label motor neurons in zebrafish. Firstly, the promotor of mnx1, which was highly expressed in the spinal cord motor neurons, was subcloned into pDestTol2pA2 construct combined with the GFP-α-Tubulin fusion protein sequence by Gateway cloning technique. Then the recombinant constructs were co-injected with transposase mRNA into the 4-8 cell zebrafish embryos. Confocal imaging analysis was performed at 72 hours post fertilization (hpf). The results showed that the GFP fusion protein was expressed in three different types of motor neurons, and individual motor neurons were mosaically labeled. Further, the present study analyzed the correlation between the injection dose and the number and distribution of the mosaically labeled neurons. Fifteen nanograms of the recombinant constructs were suggested as an appropriate injection dose. Also, the defects of the motor neuron caused by the down-regulation of insm1a and kif15 were verified with this system. These results indicate that our novel microtubule-fluorescent fusion protein mosaic system can efficiently label motor neurons in zebrafish, which provides a more effective model for exploring the development and morphogenesis of motor neurons. It may also help to decipher the mechanisms underlying motor neuron disease and can be potentially utilized in drug screening.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Genetically Modified
		                        			;
		                        		
		                        			Green Fluorescent Proteins/pharmacology*
		                        			;
		                        		
		                        			Microtubules/metabolism*
		                        			;
		                        		
		                        			Motor Neurons
		                        			;
		                        		
		                        			Zebrafish/genetics*
		                        			;
		                        		
		                        			Zebrafish Proteins/genetics*
		                        			
		                        		
		                        	
3.Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization.
Yongcun QU ; Qi CHEN ; Shanshan GUO ; Chiyuan MA ; Yonggang LU ; Junchao SHI ; Shichao LIU ; Tong ZHOU ; Taichi NODA ; Jingjing QIAN ; Liwen ZHANG ; Xili ZHU ; Xiaohua LEI ; Yujing CAO ; Wei LI ; Wei LI ; Nicolas PLACHTA ; Martin M MATZUK ; Masahito IKAWA ; Enkui DUAN ; Ying ZHANG ; Hongmei WANG
Protein & Cell 2021;12(10):810-817
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antigens, Surface/genetics*
		                        			;
		                        		
		                        			Cell Communication/genetics*
		                        			;
		                        		
		                        			Copulation/physiology*
		                        			;
		                        		
		                        			Fallopian Tubes/metabolism*
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Fertilization/genetics*
		                        			;
		                        		
		                        			GPI-Linked Proteins/genetics*
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			Genes, Reporter
		                        			;
		                        		
		                        			Green Fluorescent Proteins/metabolism*
		                        			;
		                        		
		                        			Litter Size
		                        			;
		                        		
		                        			Luminescent Proteins/metabolism*
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Knockout
		                        			;
		                        		
		                        			Mitochondria/metabolism*
		                        			;
		                        		
		                        			Reproduction/genetics*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Sperm Count
		                        			;
		                        		
		                        			Sperm Motility/genetics*
		                        			;
		                        		
		                        			Spermatozoa/metabolism*
		                        			;
		                        		
		                        			Uterus/metabolism*
		                        			
		                        		
		                        	
4.Preparation of transgenic Musca domestica by microinjection method.
Lanchen WANG ; Yang YANG ; Xiaoli SHANG ; Bing WANG ; Lin YUAN ; Guiming ZHU
Chinese Journal of Biotechnology 2021;37(2):655-662
		                        		
		                        			
		                        			The transposon vector containing enhanced green fluorescent protein (EGFP) was injected into early housefly (Musca domestica L.) eggs by microinjection method to realize stable gene expression in vivo for verification, and to study housefly gene function. A borosilicate glass micro injection needle suitable for microinjection of housefly eggs was made, the softening treatment conditions of housefly egg shells were explored, and a microinjection technology platform suitable for housefly was constructed with a high-precision microsyringe Nanoject Ⅲ as the main body. The recombinant plasmid PiggyBac-[3×P3]-EGFP containing the eye-specific 3×P3 promoter and EGFP and the stable genetic expression helper plasmid pHA3pig helper were microinjected into the treated housefly eggs. After emergence, the eye luminescence was observed, and the expression and transcription level of EGFP were detected. The results showed that the normal hatching rate of housefly eggs was 55% when rinsed in bleaching water for 35 s. The hardness of the egg shell treated for 35 s was suitable for injection and the injection needle was not easy to break. About 3% of the emerged housefly eyes had green fluorescence. Through further molecular detection, EGFP specific fragments with a size of 750 bp were amplified from DNA and RNA of housefly. Through the technical platform, the stable expression of reporter genes in housefly can be conveniently and effectively realized, and a bioreactor with housefly as the main body can be established, which provides certain reference value for subsequent research on housefly gene function.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Genetically Modified
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Genes, Reporter
		                        			;
		                        		
		                        			Green Fluorescent Proteins/genetics*
		                        			;
		                        		
		                        			Houseflies/genetics*
		                        			;
		                        		
		                        			Microinjections
		                        			
		                        		
		                        	
5.Rapid and Sparse Labeling of Neurons Based on the Mutant Virus-Like Particle of Semliki Forest Virus.
Fan JIA ; Xutao ZHU ; Pei LV ; Liang HU ; Qing LIU ; Sen JIN ; Fuqiang XU
Neuroscience Bulletin 2019;35(3):378-388
		                        		
		                        			
		                        			Sparse labeling of neurons contributes to uncovering their morphology, and rapid expression of a fluorescent protein reduces the experiment range. To achieve the goal of rapid and sparse labeling of neurons in vivo, we established a rapid method for depicting the fine structure of neurons at 24 h post-infection based on a mutant virus-like particle of Semliki Forest virus. Approximately 0.014 fluorescent focus-forming units of the mutant virus-like particle transferred enhanced green fluorescent protein into neurons in vivo, and its affinity for neurons in vivo was stronger than for neurons in vitro and BHK21 (baby hamster kidney) cells. Collectively, the mutant virus-like particle provides a robust and convenient way to reveal the fine structure of neurons and is expected to be a helper virus for combining with other tools to determine their connectivity. Our work adds a new tool to the approaches for rapid and sparse labeling of neurons in vivo.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Microscopy, Fluorescence
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Purkinje Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Semliki forest virus
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
6.Loss of VAPB Regulates Autophagy in a Beclin 1-Dependent Manner.
Dan WU ; Zongbing HAO ; Haigang REN ; Guanghui WANG
Neuroscience Bulletin 2018;34(6):1037-1046
		                        		
		                        			
		                        			Autophagy is an evolutionarily-conserved self-degradative process that maintains cellular homeostasis by eliminating protein aggregates and damaged organelles. Recently, vesicle-associated membrane protein-associated protein B (VAPB), which is associated with the familial form of amyotrophic lateral sclerosis, has been shown to regulate autophagy. In the present study, we demonstrated that knockdown of VAPB induced the up-regulation of beclin 1 expression, which promoted LC3 (microtubule-associated protein light chain 3) conversion and the formation of LC3 puncta, whereas overexpression of VAPB inhibited these processes. The regulation of beclin 1 by VAPB was at the transcriptional level. Moreover, knockdown of VAPB increased autophagic flux, which promoted the degradation of the autophagy substrate p62 and neurodegenerative disease proteins. Our study provides evidence that the regulation of autophagy by VAPB is associated with the autophagy-initiating factor beclin 1.
		                        		
		                        		
		                        		
		                        			Autophagy
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Beclin-1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Transformed
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Microtubule-Associated Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			R-SNARE Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA-Binding Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			
		                        		
		                        	
7.Early Activation of Astrocytes does not Affect Amyloid Plaque Load in an Animal Model of Alzheimer's Disease.
Dongpi WANG ; Xiaoqin ZHANG ; Mingkai WANG ; Dongming ZHOU ; Hongyu PAN ; Qiang SHU ; Binggui SUN
Neuroscience Bulletin 2018;34(6):912-920
		                        		
		                        			
		                        			Astrocytes are closely associated with Alzheimer's disease (AD). However, their precise roles in AD pathogenesis remain controversial. One of the reasons behind the different results reported by different groups might be that astrocytes were targeted at different stages of disease progression. In this study, by crossing hAPP (human amyloid precursor protein)-J20 mice with a line of GFAP-TK mice, we found that astrocytes were activated specifically at an early stage of AD before the occurrence of amyloid plaques, while microglia were not affected by this crossing. Activation of astrocytes at the age of 3-5 months did not affect the proteolytic processing of hAPP and amyloid plaque loads in the brains of hAPP-J20 mice. Our data suggest that early activation of astrocytes does not affect the deposition of amyloid β in an animal model of AD.
		                        		
		                        		
		                        		
		                        			Aldehyde Dehydrogenase
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Alzheimer Disease
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Amyloid beta-Peptides
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Amyloid beta-Protein Precursor
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Astrocytes
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			Calcium-Binding Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Glial Fibrillary Acidic Protein
		                        			;
		                        		
		                        			Glutamine
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ki-67 Antigen
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Microfilament Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Nerve Tissue Proteins
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Whole-Brain Mapping of Direct Inputs to and Axonal Projections from GABAergic Neurons in the Parafacial Zone.
Yun-Ting SU ; Meng-Yang GU ; Xi CHU ; Xiang FENG ; Yan-Qin YU
Neuroscience Bulletin 2018;34(3):485-496
		                        		
		                        			
		                        			The GABAergic neurons in the parafacial zone (PZ) play an important role in sleep-wake regulation and have been identified as part of a sleep-promoting center in the brainstem, but the long-range connections mediating this function remain poorly characterized. Here, we performed whole-brain mapping of both the inputs and outputs of the GABAergic neurons in the PZ of the mouse brain. We used the modified rabies virus EnvA-ΔG-DsRed combined with a Cre/loxP gene-expression strategy to map the direct monosynaptic inputs to the GABAergic neurons in the PZ, and found that they receive inputs mainly from the hypothalamic area, zona incerta, and parasubthalamic nucleus in the hypothalamus; the substantia nigra, pars reticulata and deep mesencephalic nucleus in the midbrain; and the intermediate reticular nucleus and medial vestibular nucleus (parvocellular part) in the pons and medulla. We also mapped the axonal projections of the PZ GABAergic neurons with adeno-associated virus, and defined the reciprocal connections of the PZ GABAergic neurons with their input and output nuclei. The newly-found inputs and outputs of the PZ were also listed compared with the literature. This cell-type-specific neuronal whole-brain mapping of the PZ GABAergic neurons may reveal the circuits underlying various functions such as sleep-wake regulation.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Axons
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Brain
		                        			;
		                        		
		                        			anatomy & histology
		                        			;
		                        		
		                        			Brain Mapping
		                        			;
		                        		
		                        			Brain Stem
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			GABAergic Neurons
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Mice, Transgenic
		                        			;
		                        		
		                        			Neural Pathways
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Peptide Elongation Factor 1
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Rabies virus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transduction, Genetic
		                        			;
		                        		
		                        			Vesicular Inhibitory Amino Acid Transport Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
9.Physical interactions and mutational analysis of MoYpt7 in Magnaporthe oryzae.
Lu-Yao HUANG ; Min WU ; Xiao-Yun YU ; Lin LI ; Fu-Cheng LIN ; Xiao-Hong LIU
Journal of Zhejiang University. Science. B 2018;19(1):79-84
		                        		
		                        			
		                        			In this study, we analyzed the physical interactions of the dominant negative isoform of MoYpt7. Our results show that MoYpt7 interacts with MoGdi1. The dominant negative isoform of MoYpt7 (dominant negative isoform, N125I) is essential for colony morphology, conidiation, and pathogenicity in the rice blast fungus. These results further demonstrate the biological functions of MoYpt7 in Magnaporthe oryzae.
		                        		
		                        		
		                        		
		                        			DNA Mutational Analysis
		                        			;
		                        		
		                        			Fungal Proteins/metabolism*
		                        			;
		                        		
		                        			Gene Expression Regulation, Fungal
		                        			;
		                        		
		                        			Genes, Fungal
		                        			;
		                        		
		                        			Green Fluorescent Proteins/metabolism*
		                        			;
		                        		
		                        			Magnaporthe/genetics*
		                        			;
		                        		
		                        			Microscopy, Fluorescence
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			Oryza/microbiology*
		                        			;
		                        		
		                        			Phenotype
		                        			;
		                        		
		                        			Plant Diseases/microbiology*
		                        			;
		                        		
		                        			Protein Isoforms
		                        			
		                        		
		                        	
10.microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish
Chang Woo KIM ; Ji Hyuk HAN ; Ling WU ; Jae Young CHOI
Yonsei Medical Journal 2018;59(1):141-147
		                        		
		                        			
		                        			PURPOSE: microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. MATERIALS AND METHODS: miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 µM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. RESULTS: Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. CONCLUSION: Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Animals, Genetically Modified
		                        			;
		                        		
		                        			Cell Count
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation/drug effects
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Green Fluorescent Proteins/metabolism
		                        			;
		                        		
		                        			Hair Cells, Auditory/drug effects
		                        			;
		                        		
		                        			Hair Cells, Auditory/physiology
		                        			;
		                        		
		                        			Larva/drug effects
		                        			;
		                        		
		                        			Larva/genetics
		                        			;
		                        		
		                        			MicroRNAs/genetics
		                        			;
		                        		
		                        			MicroRNAs/metabolism
		                        			;
		                        		
		                        			Morpholinos/pharmacology
		                        			;
		                        		
		                        			Neomycin/toxicity
		                        			;
		                        		
		                        			Regeneration/drug effects
		                        			;
		                        		
		                        			Regeneration/genetics
		                        			;
		                        		
		                        			Zebrafish/genetics
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail