1.LRRC25 plays a key role in all-trans retinoic acid-induced granulocytic differentiation as a novel potential leukocyte differentiation antigen.
Weili LIU ; Ting LI ; Pingzhang WANG ; Wanchang LIU ; Fujun LIU ; Xiaoning MO ; Zhengyang LIU ; Quansheng SONG ; Ping LV ; Guorui RUAN ; Wenling HAN
Protein & Cell 2018;9(9):785-798
		                        		
		                        			
		                        			Leukocyte differentiation antigens (LDAs) play important roles in the immune system, by serving as surface markers and participating in multiple biological activities, such as recognizing pathogens, mediating membrane signals, interacting with other cells or systems, and regulating cell differentiation and activation. Data mining is a powerful tool used to identify novel LDAs from whole genome. LRRC25 (leucine rich repeat-containing 25) was predicted to have a role in the function of myeloid cells by a large-scale "omics" data analysis. Further experimental validation showed that LRRC25 is highly expressed in primary myeloid cells, such as granulocytes and monocytes, and lowly/intermediately expressed in B cells, but not in T cells and almost all NK cells. It was down-regulated in multiple acute myeloid leukemia (AML) cell lines and bone marrow cells of AML patients and up-regulated after all-trans retinoic acid (ATRA)-mediated granulocytic differentiation in AML cell lines and acute promyelocytic leukemia (APL; AML-M3, FAB classification) cells. Localization analysis showed that LRRC25 is a type I transmembrane molecule. Although ectopic LRRC25 did not promote spontaneous differentiation of NB4 cells, knockdown of LRRC25 by siRNA or shRNA and knockout of LRRC25 by the CRISPR-Cas9 system attenuated ATRA-induced terminal granulocytic differentiation, and restoration of LRRC25 in knockout cells could rescue ATRA-induced granulocytic differentiation. Therefore, LRRC25, a potential leukocyte differentiation antigen, is a key regulator of ATRA-induced granulocytic differentiation.
		                        		
		                        		
		                        		
		                        			Antigens, Differentiation
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Differentiation
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Granulocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Leukocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Membrane Proteins
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Tretinoin
		                        			;
		                        		
		                        			pharmacology
		                        			
		                        		
		                        	
2.Effect of Dexamethasone on Blast Composition in Patients with Myelodysplastic Syndrome and Its Diagnostic Significance.
Fan ZHANG ; Zhao-Bo LI ; Ning-Ning WANG ; Shuai LIU ; Bao-Hong YUE
Journal of Experimental Hematology 2016;24(1):144-149
OBJECTIVETo analyze the effect of dexamethason (Dex) on blast composition in patients with myelodysplastic syndrome (MDS) and investigate its significance in diagnosis of MDS.
METHODSThe flow cytometry (FCM) was used to detect the blast rate and the expression of its antigens in 30 cases of MDS (10 cases were treated with Dex as DX group and 20 cases were treated without Dex as control group).
RESULTSThe difference of the CD34(+) cell number detected by FCM was not statistically significant between DX group and control group (P > 0.05); The rate of BM B cell precursors (BCP CD34(+)/CD19(+)/CD10(+) cells) increased in DX group significantly, and BM CD117(+) cells in CD34(+) cells was decreased significantly as compared with control group (P < 0.001). The expression of antigens between granulocyte and monocyte was not significantly different (P > 0.05).
CONCLUSIONThe dexamethasone can increase the rate of BCP significantly and decreased the rate of BM CD117(+) cells in CD34(+) cells significantly. There is significant influence on the blast composition in MDS patients after dexamethasone treatment and without significant influence on the other phenotypcs.
Antigens, CD34 ; metabolism ; Dexamethasone ; therapeutic use ; Flow Cytometry ; Granulocytes ; cytology ; Humans ; Monocytes ; cytology ; Myelodysplastic Syndromes ; drug therapy ; Precursor Cells, B-Lymphoid ; cytology ; Proto-Oncogene Proteins c-kit ; metabolism
3.The preliminary research in paroxysmal nocturnal hemoglobinuria with thrombosis.
Yali DU ; Zhangbiao LONG ; Haiyan XIE ; Junling ZHUANG ; Bing HAN
Chinese Journal of Hematology 2016;37(4):318-323
OBJECTIVETo explore the high risk factors of thrombosis in paroxysmal nocturnal hemoglobinuria (PNH). It has been reported that in Chinese patients with venous thrombosis, the mutation frequency in PROC c.574_576 del (rs199469469), PROC c.565C>T (rs146922325) and THBD c.-151G>T (rs1698852) was higher than that of normal controls, indicating its importance in thrombophilia pathogenesis.
METHODS142 patients with PNH diagnosed between 2009 and 2015 were enrolled in the study. Clinical data were analyzed and thrombophilia risk factors, such as the level of protein C, protein S, antithrombin III, APC resistance, blood fat, phospholipid antibody, were evaluated. Samples from patients and 100 normal controls were detected for the mutations of PROC c.574_576 del (rs199469469), PROC c.565C>T (rs146922325) and THBD c.-151G>T (rs1698852) by Sanger sequence.
RESULTSOf the 142 PNH patients, 21 (14.8%) patients had at least 1 episode of thrombotic event. Only 2 patients had arterial thrombosis and 19 patients had venous thrombosis. The median age of patients with thrombosis was 35 years old, similar to those without episode (40 years old, P=0.687). The ratios of males and females were 1.33 in thrombosis group and 1.57 in non-thrombosis group (P=0.728) , respectively. Patients with thrombosis had the same disease pattern compared with those without episode. Although there was no difference in the level of hemoglobin, WBC and PLT count, and LDH level between patients with thrombosis and those without episode, patients with thrombosis showed higher RBC, higher percentage of CD59(-) granulocytes and RBC, and Flaer(-) granulocytes compared with those without episode. The routine thrombophilia screening tests did not show any difference either between PNH patients and normal controls, or between patients with or without thrombosis. There were two mutations in rs199469469 and rs16984852 sites in patients with PNH, but the mutated patients did not have any thrombosis. Mutation rs146922325 was found in PNH patients. The mutation rate was similar between PNH patients and normal controls, thrombotic PNH and non-thrombotic PNH (P>0.05).
CONCLUSIONSCompared with non-thrombotic patients, PNH thrombotic patients have bigger PNH clone and higher RBC count. There are no differences among the routine thrombophilia factors and the three known venous eligible genes either between PNH patients and normal controls or between thrombotic and non-thrombotic PNH patients.
Adult ; Antithrombin III ; metabolism ; Case-Control Studies ; Clone Cells ; cytology ; Female ; Granulocytes ; cytology ; Hemoglobinuria, Paroxysmal ; genetics ; physiopathology ; Humans ; Leukocyte Count ; Male ; Protein C ; metabolism ; Protein S ; metabolism ; Risk Factors ; Thrombosis ; genetics ; physiopathology
4.Clinical and laboratory characteristics in patients of myelodysplastic syndrome with PNH clones.
Yan LI ; Tiejun QIN ; Zefeng XU ; Yue ZHANG ; Jingya WANG ; Bing LI ; Liwei FANG ; Lijuan PAN ; Naibo HU ; Hongli ZHANG ; Shiqiang QU ; Jinqin LIU ; Huijun WANG ; Zhijian XIAO
Chinese Journal of Hematology 2016;37(4):313-317
OBJECTIVETo analyze the clinical, laboratory characteristics and PIG-A gene mutations in patients of myelodysplastic syndromes (MDS) with PNH clones.
METHODS218 MDS patients diagnosed from August 2013 to August 2015 were analyzed. The PIG-A gene mutations were tested in 13 cases of MDS with PNH clones, 17 cases of AA-PNH and 14 cases of PNH selected contemporaneously by PCR and direct sequencing.
RESULTS13 (5.96%) MDS patients were detected with PNH clones (13/218 cases). 9 patients were treated with cyclosporin A (CsA). Patients showed hematological improvement (HI). There were significant differences between MDS-PNH and PNH patients in terms of granulocyte clone size, red cell clone size and LDH levels [19.2% (1.0%-97.7%) vs 60.2% (3.1%-98.0%), P=0.007; 4.3% (0-67.2%) vs 27.9% (2.5%-83.6%), P=0.026; 246 (89-2014) U/L vs 1137 (195-2239) U/L, P=0.049], while the differences were not statistically significant in patients between MDS-PNH and AA-PNH patients [19.2% (1.0%-97.7%) vs 23.2% (1.5%-96.0%), P=0.843; 4.3% (0-67.2%) vs 14.4% (1.1%-62.8%), P=0.079; 246 (89-2014) U/L vs 406 (192-1148) U/L, P=0.107]. PIG-A gene mutations were detected in 7 MDS-PNH patients, of them, six were missense mutations, one were frameshift mutation and four cases with the same mutation of c.356G>A (R119Q). The PIG-A gene mutations were also detected in 9/11 AA-PNH patients and 11/14 PNH patients, both of them had the mutation of c.356G>A (R119Q). The PIG-A gene mutations of MDS-PNH, AA-PNH, PNH patients were all small mutations, the majority of those (59%) were missense mutation and mainly located in exon 2.
CONCLUSIONMDS patients with PNH clones had better response to CsA, smaller PNH clone size. The PIG-A gene mutations of MDS-PNH patients mainly located in exon 2, which could be a mutational hotspot of these patients.
Anemia, Aplastic ; genetics ; Clone Cells ; Erythrocytes ; cytology ; Exons ; Granulocytes ; cytology ; Hemoglobinuria, Paroxysmal ; genetics ; Humans ; Membrane Proteins ; genetics ; Mutation ; Myelodysplastic Syndromes ; genetics ; Polymerase Chain Reaction
5.A Novel Marker for Screening Paroxysmal Nocturnal Hemoglobinuria Using Routine Complete Blood Count and Cell Population Data.
Jimin KAHNG ; Yonggoo KIM ; Jung Ok KIM ; Kwangsang KOH ; Jong Wook LEE ; Kyungja HAN
Annals of Laboratory Medicine 2015;35(1):35-40
		                        		
		                        			
		                        			BACKGROUND: Final diagnosis of paroxysmal nocturnal hemoglobinuria (PNH) may take years demanding a quick diagnosis measure. We used the facts that PNH cells are damaged in acid, and reagents for measuring reticulocytes in Coulter DxH800 (Beckman Coulter, USA) are weakly acidic and hypotonic, to create a new PNH screening marker. METHODS: We analyzed 979 complete blood counts (CBC) data from 963 patients including 57 data from 44 PNH patients. Standard criteria for PNH assay for population selection were followed: flow cytometry for CD55 and CD59 on red blood cells (RBCs) to a detection level of 1%; and fluorescent aerolysin, CD24 and CD15 in granulocytes to 0.1%. Twenty-four PNH minor clone-positive samples (minor-PNH+) were taken, in which the clone population was <5% of RBCs and/or granulocytes. Excluding PNH and minor-PNH+ patients, the population was divided into anemia, malignancy, infection, and normal groups. Parameters exhibiting a distinct demarcation between PNH and non-PNH groups were identified, and each parameter cutoff value was sought that includes the maximum [minimum] number of PNH [non-PNH] patients. RESULTS: Cutoff values for 5 selected CBC parameters (MRV, RDWR, MSCV, MN-AL2-NRET, and IRF) were determined. Positive rates were: PNH (86.0%), minor-PNH+ (33.3%), others (5.0%), anemia (13.4%), malignancy (5.3%), infection (3.7%), normal (0.0%); within anemia group, aplastic anemia (40.0%), immune hemolytic anemia (11.1%), iron deficiency anemia (1.6%). Sensitivity (86.0%), specificity (95.0%), PPV (52.1%), and NPV (99.1%) were achieved in PNH screening. CONCLUSION: A new PNH screening marker is proposed with 95% specificity and 86% sensitivity. The flag identifies PNH patients, reducing time to final diagnosis by flow cytometry.
		                        		
		                        		
		                        		
		                        			Antigens, CD15/metabolism
		                        			;
		                        		
		                        			Antigens, CD24/metabolism
		                        			;
		                        		
		                        			Antigens, CD55/metabolism
		                        			;
		                        		
		                        			Antigens, CD59/metabolism
		                        			;
		                        		
		                        			Biomarkers/metabolism
		                        			;
		                        		
		                        			Blood Cell Count
		                        			;
		                        		
		                        			Erythrocytes/cytology/metabolism
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Granulocytes/cytology/metabolism
		                        			;
		                        		
		                        			Hemoglobinuria, Paroxysmal/*diagnosis/metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Sensitivity and Specificity
		                        			
		                        		
		                        	
6.Diagnostic Significance of BAT in Anaphylaxis to Non-ionic Contrast Media.
Hao-yue ZHANG ; Su-jun XU ; Xiao-xian TANG ; Ji-jun NIU ; Xiang-jie GUO ; Cai-rong GAO
Journal of Forensic Medicine 2015;31(3):188-190
		                        		
		                        			OBJECTIVE:
		                        			To investigate the diagnostic significance of basophil activation test (BAT) in anaphylaxis to non-ionic contrast media through testing the content of CD63, mast cell-carboxypeptidase A3 (MC-CPA3), and terminal complement complex SC5b-9 of the individuals by testing their levels in the normal immune group and the anaphylaxis groups to β-lactam drugs and non -ionic contrast media.
		                        		
		                        			METHODS:
		                        			The CD63 expression of basophilic granulocyte in blood was detected by flow cytometry. The levels of MC-CPA3 in blood serum and SC5b-9 in blood plasma were detected by ELISA.
		                        		
		                        			RESULTS:
		                        			The CD63 expression of basophilic granulocyte in blood, the levels of MC-CPA3 and SC5b-9 of anaphylaxis to non-ionic contrast media and β-lactam drugs were significantly higher than that in normal immune group (P < 0.05).
		                        		
		                        			CONCLUSION
		                        			There is activation of basophilic granulocytes, mast cells and complement system in anaphylaxis to non-ionic contrast media. BAT can be used to diagnose the anaphylaxis to non-ionic contrast media.
		                        		
		                        		
		                        		
		                        			Anaphylaxis/diagnosis*
		                        			;
		                        		
		                        			Basophils/cytology*
		                        			;
		                        		
		                        			Carboxypeptidases A/metabolism*
		                        			;
		                        		
		                        			Complement Membrane Attack Complex/metabolism*
		                        			;
		                        		
		                        			Contrast Media
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Granulocytes/cytology*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mast Cells/cytology*
		                        			;
		                        		
		                        			Tetraspanin 30/metabolism*
		                        			
		                        		
		                        	
7.Effect of GW003 on the granulocyte macrophage colony formation ability of bone marrow cells in vitro.
Hong-Ling OU ; Shuang XING ; Ming LI ; Guo-Lin XIONG ; Feng-Hua CHEN ; Xiao-Ning LI ; Xin-Ru WANG
Journal of Experimental Hematology 2014;22(2):475-478
		                        		
		                        			
		                        			The aim of this study was to investigate the effect of GW003 on the ability of granulocyte colony forming in vitro of bone marrow cells. The bone marrow samples was collected from normal rhesus, the patients with leukemia in stages of remission and chemotherapy respectively, and the nucleated cells were separated and cultured for 12 days after addition of different concentrations of GW003 or rhG-CSF, or G-CSF mutant. Then the amount of colony-forming unit-granulocyte-macrophage was counted. The results indicated that GW003 could enhance the ability of bone marrow nucleated cells of rhesus to forming CFU-GM in vitro, and its effect was much better than that of rhG-CSF or G-CSF mutant at the same concentration(®). The GW003 showed dose-response relationship to CFU-GM level (r = R(2) = 0.965, P = 0.003, in a certain concentration), the GW003 also could enhance CFU-GM formation of marrow nucleated cells in leukemic patients, especially for patients receiving chemotherapy. The GW003 could relieve the marrow suppression caused by chemotherapy significantly. It is concluded that the GW003 can significantly improve the ability of bone marrow cells to form granulocyte colony in vitro as well as effectively alleviate bone marrow suppression.
		                        		
		                        		
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bone Marrow Cells
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Colony-Forming Units Assay
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Granulocyte Colony-Stimulating Factor
		                        			;
		                        		
		                        			pharmacology
		                        			;
		                        		
		                        			Granulocyte-Macrophage Progenitor Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Granulocytes
		                        			;
		                        		
		                        			drug effects
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Macaca mulatta
		                        			
		                        		
		                        	
8.Reliable, Accurate Determination of the Leukocyte Differential of Leukopenic Samples by Using Hematoflow Method.
Yongjun JO ; Soo Hwa KIM ; Kwangsang KOH ; Jongmoon PARK ; Yang Bo SHIM ; Jihyang LIM ; Yonggoo KIM ; Yeon Joon PARK ; Kyungja HAN
The Korean Journal of Laboratory Medicine 2011;31(3):131-137
		                        		
		                        			
		                        			BACKGROUND: Hematology analyzers may ineffectively recognize abnormal cells, and manual differential counts may be imprecise for leukopenic samples. We evaluated the efficacy of the Hematoflow method for determining the leukocyte differential in leukopenic samples and compared this method with the manual differential method. METHODS: We selected 249 blood samples from 167 patients with leukopenia (WBC counts, 500-2,000/microL) for analysis in this study. The EDTA-anticoagulated blood samples were analyzed using an automatic blood cell counter (DxH800; Beckman Coulter, USA) and flow cytometry (FC 500; Beckman Coulter) by using Cytodiff reagent and analysis software (Beckman Coulter). Hematoflow results were selected or calculated from DxH800 and Cytodiff results. Two trained pathologists performed a manual differential count by counting 50-100 cells. RESULTS: The precision of the Hematoflow method was superior to that of the manual method in counting 5 leukocyte subpopulations, immature granulocytes (IGs), and blasts. Blasts were detected in all 45 cases (100%) by Hematoflow. The correlation of the Cytodiff blast count to the reference count was high (r = 0.8325). For all other cell populations, the correlation of the Hematoflow results with the reference count was stronger than that of the other manual counts with the reference count. CONCLUSIONS: The Hematoflow differential counting method is more reproducible and sensitive than manual counting, and is relatively easy to perform. In particular, this method detected leukemic blasts more sensitively than manual differential counts. The Hematoflow method is a very useful supplement to automated cell counting.
		                        		
		                        		
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Flow Cytometry/*methods
		                        			;
		                        		
		                        			Granulocytes/cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Leukocyte Count/*methods
		                        			;
		                        		
		                        			Leukocytes/*cytology
		                        			;
		                        		
		                        			Leukopenia/*blood/diagnosis
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Reagent Kits, Diagnostic
		                        			;
		                        		
		                        			Software
		                        			
		                        		
		                        	
9.Reliable, Accurate Determination of the Leukocyte Differential of Leukopenic Samples by Using Hematoflow Method.
Yongjun JO ; Soo Hwa KIM ; Kwangsang KOH ; Jongmoon PARK ; Yang Bo SHIM ; Jihyang LIM ; Yonggoo KIM ; Yeon Joon PARK ; Kyungja HAN
The Korean Journal of Laboratory Medicine 2011;31(3):131-137
		                        		
		                        			
		                        			BACKGROUND: Hematology analyzers may ineffectively recognize abnormal cells, and manual differential counts may be imprecise for leukopenic samples. We evaluated the efficacy of the Hematoflow method for determining the leukocyte differential in leukopenic samples and compared this method with the manual differential method. METHODS: We selected 249 blood samples from 167 patients with leukopenia (WBC counts, 500-2,000/microL) for analysis in this study. The EDTA-anticoagulated blood samples were analyzed using an automatic blood cell counter (DxH800; Beckman Coulter, USA) and flow cytometry (FC 500; Beckman Coulter) by using Cytodiff reagent and analysis software (Beckman Coulter). Hematoflow results were selected or calculated from DxH800 and Cytodiff results. Two trained pathologists performed a manual differential count by counting 50-100 cells. RESULTS: The precision of the Hematoflow method was superior to that of the manual method in counting 5 leukocyte subpopulations, immature granulocytes (IGs), and blasts. Blasts were detected in all 45 cases (100%) by Hematoflow. The correlation of the Cytodiff blast count to the reference count was high (r = 0.8325). For all other cell populations, the correlation of the Hematoflow results with the reference count was stronger than that of the other manual counts with the reference count. CONCLUSIONS: The Hematoflow differential counting method is more reproducible and sensitive than manual counting, and is relatively easy to perform. In particular, this method detected leukemic blasts more sensitively than manual differential counts. The Hematoflow method is a very useful supplement to automated cell counting.
		                        		
		                        		
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Flow Cytometry/*methods
		                        			;
		                        		
		                        			Granulocytes/cytology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Infant
		                        			;
		                        		
		                        			Leukocyte Count/*methods
		                        			;
		                        		
		                        			Leukocytes/*cytology
		                        			;
		                        		
		                        			Leukopenia/*blood/diagnosis
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Reagent Kits, Diagnostic
		                        			;
		                        		
		                        			Software
		                        			
		                        		
		                        	
10.Immunophenotypic Features of Granulocytes, Monocytes, and Blasts in Myelodysplastic Syndromes.
Hee Won MOON ; Jung Won HUH ; Miae LEE ; Ki Sook HONG ; Wha Soon CHUNG
The Korean Journal of Laboratory Medicine 2010;30(2):97-104
		                        		
		                        			
		                        			BACKGROUND: Despite the diagnostic utility of immunophenotyping for myelodysplastic syndromes (MDS), it has not been widely performed, and reports on this are absent in Korea. We aimed to evaluate the immunophenotypic features of non-blastic granulocytes, monocytes, and blasts in patients with MDS and non-clonal disorders using routine flow cytometry (FCM). Moreover, we evaluated the phenotypic abnormalities of mature cells in leukemic patients. METHODS: Marrow aspirates from 60 patients, including 18 with MDS, 18 with leukemia, and 24 with non-clonal disorders (control group), were analyzed using FCM. Blasts, non-blast myeloid cells, and monocytes were gated based on CD45 expression and side scatter (SSC). The phenotypes were then compared among the 3 groups. RESULTS: Compared to non-clonal disorders, the granulocytic lineages of MDS showed decreased SSC (P=0.005), increased CD45 intensity (P=0.020), decreased CD10-positive granulocytes (P= 0.030), and a higher CD56-positive rate (P=0.005). It is noteworthy that similar results were obtained in the leukemia group, and these findings were not related to the phenotypes of the leukemic cells. Using blast and monocytic gating, useful parameters for generating a differential diagnosis were not found. CONCLUSIONS: Gating the granulocytic region is a relatively easy method for MDS immunophenotyping. Among the parameters studied, SSC, CD10, and CD56 were the most useful for differentiating MDS from non-clonal disorders. While immunophenotypic changes in MDS appear to be useful for differentiating MDS from non-clonal disorders, these changes were also noted in the mature cells of leukemic patients.
		                        		
		                        		
		                        		
		                        			Adolescent
		                        			;
		                        		
		                        			Adult
		                        			;
		                        		
		                        			Aged
		                        			;
		                        		
		                        			Aged, 80 and over
		                        			;
		                        		
		                        			Antigens, CD45/metabolism
		                        			;
		                        		
		                        			Antigens, CD56/metabolism
		                        			;
		                        		
		                        			Bone Marrow Cells/cytology
		                        			;
		                        		
		                        			Cell Lineage
		                        			;
		                        		
		                        			Child
		                        			;
		                        		
		                        			Child, Preschool
		                        			;
		                        		
		                        			Diagnosis, Differential
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Flow Cytometry
		                        			;
		                        		
		                        			Granulocytes/*classification
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			*Immunophenotyping
		                        			;
		                        		
		                        			Leukemia/diagnosis/pathology
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Middle Aged
		                        			;
		                        		
		                        			Monocytes/*classification
		                        			;
		                        		
		                        			Myelodysplastic Syndromes/*diagnosis
		                        			;
		                        		
		                        			Neprilysin/metabolism
		                        			;
		                        		
		                        			Phenotype
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail