1.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
2.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
3.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
4.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
5.Diagnostic performance of quantitative ultrasonography for hepatic steatosis in a health screening program: a prospective single-center study
Jeung Hui PYO ; Soo Jin CHO ; Sung Chul CHOI ; Jae Hwan JEE ; Jeeyeong YUN ; Jeong Ah HWANG ; Goeun PARK ; Kyunga KIM ; Wonseok KANG ; Mira KANG ; Young hye BYUN
Ultrasonography 2024;43(4):250-262
Purpose:
This study compared the diagnostic performance of quantitative ultrasonography (QUS) with that of conventional ultrasonography (US) in assessing hepatic steatosis among individuals undergoing health screening using magnetic resonance imaging–derived proton density fat fraction (MRI-PDFF) as the reference standard.
Methods:
This single-center prospective study enrolled 427 participants who underwent abdominal MRI and US. Measurements included the attenuation coefficient in tissue attenuation imaging (TAI) and the scatter-distribution coefficient in tissue scatter-distribution imaging (TSI). The correlation between QUS and MRI-PDFF was evaluated. The diagnostic capabilities of QUS, conventional B-mode US, and their combined models for detecting hepatic fat content of ≥5% (MRI-PDFF ≥5%) and ≥10% (MRI-PDFF ≥10%) were compared by analyzing the areas under the receiver operating characteristic curves. Additionally, clinical risk factors influencing the diagnostic performance of QUS were identified using multivariate linear regression analyses.
Results:
TAI and TSI were strongly correlated with MRI-PDFF (r=0.759 and r=0.802, respectively; both P<0.001) and demonstrated good diagnostic performance in detecting and grading hepatic steatosis. The combination of QUS and B-mode US resulted in the highest areas under the ROC curve (AUCs) (0.947 and 0.975 for detecting hepatic fat content of ≥5% and ≥10%, respectively; both P<0.05), compared to TAI, TSI, or B-mode US alone (AUCs: 0.887, 0.910, 0.878 for ≥5% and 0.951, 0.922, 0.875 for ≥10%, respectively). The independent determinants of QUS included skinliver capsule distance (β=7.134), hepatic fibrosis (β=4.808), alanine aminotransferase (β=0.202), triglyceride levels (β=0.027), and diabetes mellitus (β=3.710).
Conclusion
QUS is a useful and effective screening tool for detecting and grading hepatic steatosis during health checkups.
6.Nasal Colonization of Serine Protease esp Positive Staphylococcus epidermidis Affecting Staphylococcus aureus Colonization
Goeun KANG ; Hyun Soo KIM ; Han-Sung KIM ; Wonkeun SONG ; Jae-Seok KIM
Annals of Clinical Microbiology 2021;24(3):105-110
Background:
Staphylococcus aureus is a common colonizer of the nasal vestibule and is found in approximately 20%–30% of healthy adults, while Staphylococcus epidermidis appears to be the most frequent colonizer in all regions of the upper respiratory tract. Esp, aserine protease of S. epidermidis, was reported to inhibit S.aureus colonization. This study was performed to examine the nasal colonization of S. aureus and S. epidermidis and the presence of esp determinants.
Methods:
Nasal swab specimens from 54 patients were cultured on blood agar plates (BAP) and selective media for S. aureus (S. aureus ID, bioMerieux, France) for the isolation of S.aureus and S. epidermidis. After 48 hours of incubation of with BAP, three or four colonies suspected of being coagulase-negative staphylococci (CNS) were identified by MALDI-TOF MS (Bruker, Germany). Polymerase chain reaction (PCR) for esp was performed on all CNS isolates identified as S. epidermidis.
Results:
Forty-three S. epidermidis strains were isolated from 18 (33.3%) of the 54 patients.Nine (50.0%) of the 18 patients carried S. aureus, while the other nine did not. Of the 36 S. epidermidis non-carriers, 13 (36.1%) were colonized by S. aureus. All S. epidermidis strains were confirmed by PCR to have esp determinants.
Conclusion
S. epidermidis colonization did not affect S. aureus colonization in the nasal cavity. All S. epidermidis strains harbored the esp gene. We could not find any differences in the nasal colonization rates of S. aureus according to the presence of esp-positive S. epidermidis. Further research on the characterization of S. epidermidis in Korea is needed to understand the association between S. epidermidis and S. aureus colonization.
7.Nasal Colonization of Serine Protease esp Positive Staphylococcus epidermidis Affecting Staphylococcus aureus Colonization
Goeun KANG ; Hyun Soo KIM ; Han-Sung KIM ; Wonkeun SONG ; Jae-Seok KIM
Annals of Clinical Microbiology 2021;24(3):105-110
Background:
Staphylococcus aureus is a common colonizer of the nasal vestibule and is found in approximately 20%–30% of healthy adults, while Staphylococcus epidermidis appears to be the most frequent colonizer in all regions of the upper respiratory tract. Esp, aserine protease of S. epidermidis, was reported to inhibit S.aureus colonization. This study was performed to examine the nasal colonization of S. aureus and S. epidermidis and the presence of esp determinants.
Methods:
Nasal swab specimens from 54 patients were cultured on blood agar plates (BAP) and selective media for S. aureus (S. aureus ID, bioMerieux, France) for the isolation of S.aureus and S. epidermidis. After 48 hours of incubation of with BAP, three or four colonies suspected of being coagulase-negative staphylococci (CNS) were identified by MALDI-TOF MS (Bruker, Germany). Polymerase chain reaction (PCR) for esp was performed on all CNS isolates identified as S. epidermidis.
Results:
Forty-three S. epidermidis strains were isolated from 18 (33.3%) of the 54 patients.Nine (50.0%) of the 18 patients carried S. aureus, while the other nine did not. Of the 36 S. epidermidis non-carriers, 13 (36.1%) were colonized by S. aureus. All S. epidermidis strains were confirmed by PCR to have esp determinants.
Conclusion
S. epidermidis colonization did not affect S. aureus colonization in the nasal cavity. All S. epidermidis strains harbored the esp gene. We could not find any differences in the nasal colonization rates of S. aureus according to the presence of esp-positive S. epidermidis. Further research on the characterization of S. epidermidis in Korea is needed to understand the association between S. epidermidis and S. aureus colonization.
8.Complete STK11 Deletion and Atypical Symptoms in Peutz-Jeghers Syndrome.
Myeong Sun JANG ; Yoo Min LEE ; Bong Min KO ; Goeun KANG ; Jong Won KIM ; Yong Hee HONG
Annals of Laboratory Medicine 2017;37(5):462-464
No abstract available.
Peutz-Jeghers Syndrome*
9.Detection of Rotavirus from the Inner Surfaces of Domestic Refrigerators.
Goeun KANG ; Hyun Soo KIM ; Han Sung KIM ; Jae Seok KIM ; Wonkeun SONG ; Ji Young PARK ; Hyoun Chan CHO
Laboratory Medicine Online 2016;6(2):93-97
BACKGROUND: Rotavirus is the leading cause of acute viral gastroenteritis, particularly in children, and is transmitted through the fecal-to-oral route by contaminated food or the environment. This study examined the contamination of the inner surfaces of domestic refrigerators with pathogens causing gastroenteritis. METHODS: Swab specimens from shelf surfaces of freezers and refrigerators were collected from 10 domestic refrigerators. Multiplex PCR for bacterial and viral pathogens causing acute gastroenteritis was performed. The VP7 and VP4 genes of rotavirus were amplified and then analyzed by DNA sequencing. RESULTS: Rotavirus was detected in five domestic refrigerators in the same apartment complex. All rotavirus samples showed the G1 genotype and the same DNA sequences. No pathogens causing acute gastroenteritis were identified in the other five domestic refrigerators. CONCLUSIONS: The inner surfaces of domestic refrigerators can be contaminated with pathogens causing acute gastroenteritis, such as rotavirus. Attention should be given to the hygiene of refrigerators. To estimate the contamination or hygienic status for food storage, testing for viral pathogens combined with ordinary bacterial cultures may be necessary.
Base Sequence
;
Child
;
Food Storage
;
Foodborne Diseases
;
Gastroenteritis
;
Genotype
;
Humans
;
Hygiene
;
Multiplex Polymerase Chain Reaction
;
Rotavirus*
;
Sequence Analysis, DNA
10.A Case of Septic Shock caused by Achromobacter xylosoxidans in an Immunocompetent Female Patient after Extracorporeal Shock Wave Lithotripsy for a Ureteral Stone.
Jae Hyuk LEE ; So Yon LEE ; In Young PARK ; So Yeon PARK ; Jin Seo LEE ; Goeun KANG ; Jae Seok KIM ; Joong Sik EOM
Infection and Chemotherapy 2016;48(1):47-50
Achromobacter xylosoxidans can cause various types of infections, but its infection in humans is rare. A. xylosoxidans has been reported as a rare etiological agent of infections including primary bacteremia, catheter-related bloodstream infection, endocarditis, otitis, and pneumonia, particularly in immunocompromised hosts. We encountered a case of septic shock caused by A. xylosoxidans in a 52-year-old, immunocompetent woman with no underlying disease, who received extracorporeal shock wave lithotripsy to remove a left upper ureteral stone. She was treated with antibiotics to which the organism was susceptible but died as a result of septic shock.
Achromobacter denitrificans*
;
Achromobacter*
;
Anti-Bacterial Agents
;
Bacteremia
;
Endocarditis
;
Female*
;
Humans
;
Immunocompromised Host
;
Lithotripsy*
;
Middle Aged
;
Otitis
;
Pneumonia
;
Shock*
;
Shock, Septic*
;
Ureter*

Result Analysis
Print
Save
E-mail