1.Baicalin Ameliorates Corticosterone-Induced Depression by Promoting Neurodevelopment of Hippocampal via mTOR/GSK3β Pathway.
Zhe WANG ; Ya-Ting CHENG ; Ye LU ; Guo-Qiang SUN ; Lin PEI
Chinese journal of integrative medicine 2023;29(5):405-412
		                        		
		                        			OBJECTIVE:
		                        			To investigate the role of hippocampal neurodevelopment in the antidepressant effect of baicalin.
		                        		
		                        			METHODS:
		                        			Forty male Institute of Cancer Research mice were divided into control, corticosterone (CORT, 40 mg/kg), CORT+baicalin-L (25 mg/kg), CORT+baicalin-H (50 mg/kg), and CORT+fluoxetine (10 mg/kg) groups according to a random number table. An animal model of depression was established by chronic CORT exposure. Behavioral tests were used to assess the reliability of depression model and the antidepressant effect of baicalin. In addition, Nissl staining and immunofluorescence were used to evaluate the effect of baicalin on hippocampal neurodevelopment in mice. The protein and mRNA expression levels of neurodevelopment-related factors were detected by Western blot analysis and real-time polymerase chain reaction, respectively.
		                        		
		                        			RESULTS:
		                        			Baicalin significantly ameliorated the depressive-like behavior of mice resulting from CORT exposure and promoted the development of dentate gyrus in hippocampus, thereby reversing the depressive-like pathological changes in hippocampal neurons caused by CORT neurotoxicity. Moreover, baicalin significantly decreased the protein and mRNA expression levels of glycogen synthase kinase 3β (GSK3β), and upregulated the expression levels of cell cycle protein D1, p-mammalian target of rapamycin (mTOR), doublecortin, and brain-derived neurotrophic factor (all P<0.01). There were no significant differences between baicalin and fluoxetine groups (P>0.05).
		                        		
		                        			CONCLUSION
		                        			Baicalin can promote the development of hippocampal neurons via mTOR/GSK3β signaling pathway, thus protect mice against CORT-induced neurotoxicity and play an antidepressant role.
		                        		
		                        		
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Corticosterone
		                        			;
		                        		
		                        			Fluoxetine/metabolism*
		                        			;
		                        		
		                        			Depression/chemically induced*
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/metabolism*
		                        			;
		                        		
		                        			Reproducibility of Results
		                        			;
		                        		
		                        			Antidepressive Agents/pharmacology*
		                        			;
		                        		
		                        			Hippocampus
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			RNA, Messenger/genetics*
		                        			;
		                        		
		                        			Behavior, Animal
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Mammals/metabolism*
		                        			
		                        		
		                        	
2.Bis (2-butoxyethyl) Phthalate Delays Puberty Onset by Increasing Oxidative Stress and Apoptosis in Leydig Cells in Rats.
Miao Qing LIU ; Hai Qiong CHEN ; Hai Peng DAI ; Jing Jing LI ; Fu Hong TIAN ; Yi Yan WANG ; Cong De CHEN ; Xiao Heng LI ; Jun Wei LI ; Zhong Rong LI ; Ren Shan GE
Biomedical and Environmental Sciences 2023;36(1):60-75
		                        		
		                        			OBJECTIVE:
		                        			This study investigated the effects of bis (2-butoxyethyl) phthalate (BBOP) on the onset of male puberty by affecting Leydig cell development in rats.
		                        		
		                        			METHODS:
		                        			Thirty 35-day-old male Sprague-Dawley rats were randomly allocated to five groups mg/kg bw per day that were gavaged for 21 days with BBOP at 0, 10, 100, 250, or 500 mg/kg bw per day. The hormone profiles; Leydig cell morphological metrics; mRNA and protein levels; oxidative stress; and AKT, mTOR, ERK1/2, and GSK3β pathways were assessed.
		                        		
		                        			RESULTS:
		                        			BBOP at 250 and/or 500 mg/kg bw per day decreased serum testosterone, luteinizing hormone, and follicle-stimulating hormone levels mg/kg bw per day (P < 0.05). BBOP at 500 mg/kg bw per day decreased Leydig cell number mg/kg bw per day and downregulated Cyp11a1, Insl3, Hsd11b1, and Dhh in the testes, and Lhb and Fshb mRNAs in the pituitary gland (P < 0.05). The malondialdehyde content in the testis significantly increased, while Sod1 and Sod2 mRNAs were markedly down-regulated, by BBOP treatment at 250-500 mg/kg bw per day (P < 0.05). Furthermore, BBOP at 500 mg/kg bw per day decreased AKT1/AKT2, mTOR, and ERK1/2 phosphorylation, and GSK3β and SIRT1 levels mg/kg bw per day (P < 0.05). Finally, BBOP at 100 or 500 μmol/L induced ROS and apoptosis in Leydig cells after 24 h of treatment in vitro (P < 0.05).
		                        		
		                        			CONCLUSION:
		                        			BBOP delays puberty onset by increasing oxidative stress and apoptosis in Leydig cells in rats.
		                        		
		                        			UNLABELLED
		                        			The graphical abstract is available on the website www.besjournal.com.
		                        		
		                        		
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Leydig Cells/metabolism*
		                        			;
		                        		
		                        			Testosterone
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/pharmacology*
		                        			;
		                        		
		                        			Rats, Sprague-Dawley
		                        			;
		                        		
		                        			Sexual Maturation
		                        			;
		                        		
		                        			Testis
		                        			;
		                        		
		                        			Oxidative Stress
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			Apoptosis
		                        			
		                        		
		                        	
3.PDCD6 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis through the AKT/GSK3β/β-catenin Pathway.
Shi Yuan WEN ; Yan Tong LIU ; Bing Yan WEI ; Jie Qiong MA ; Yan Yan CHEN
Biomedical and Environmental Sciences 2023;36(3):241-252
		                        		
		                        			OBJECTIVE:
		                        			Programmed cell death 6 (PDCD6), a Ca 2+-binding protein, has been reported to be aberrantly expressed in all kinds of tumors. The aim of this study was to explore the role and mechanism of PDCD6 in hepatocellular carcinomas (HCCs).
		                        		
		                        			METHODS:
		                        			The expression levels of PDCD6 in liver cancer patients and HCC cell lines were analyzed using bioinformatics and Western blotting. Cell viability and metastasis were determined by methylthiazol tetrazolium (MTT) and transwell assays, respectively. And Western blotting was used to test related biomarkers and molecular pathway factors in HCC cell lines. LY294002, a PI3K inhibitor inhibiting AKT, was used to suppress the AKT/GSK3β/β-catenin pathway to help evaluate the role of this pathway in the HCC carcinogenesis associated with PDCD6.
		                        		
		                        			RESULTS:
		                        			The analysis of The Cancer Genome Atlas Database suggested that high PDCD6 expression levels were relevant to liver cancer progression. This was consistent with our finding of higher levels of PDCD6 expression in HCC cell lines than in normal hepatocyte cell lines. The results of MTT, transwell migration, and Western blotting assays revealed that overexpression of PDCD6 positively regulated HCC cell proliferation, migration, and invasion. Conversely, the upregulation of PDCD6 expression in the presence of an AKT inhibitor inhibited HCC cell proliferation, migration, and invasion. In addition, PDCD6 promoted HCC cell migration and invasion by epithelial-mesenchymal transition. The mechanistic investigation proved that PDCD6 acted as a tumor promoter in HCC through the AKT/GSK3β/β-catenin pathway, increasing the expression of transcription factors and cellular proliferation and metastasis.
		                        		
		                        			CONCLUSION
		                        			PDCD6 has a tumor stimulative role in HCC mediated by AKT/GSK3β/β-catenin signaling and might be a potential target for HCC progression.
		                        		
		                        		
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Carcinoma, Hepatocellular/pathology*
		                        			;
		                        		
		                        			Liver Neoplasms/pathology*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			beta Catenin/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/metabolism*
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Calcium-Binding Proteins/metabolism*
		                        			;
		                        		
		                        			Apoptosis Regulatory Proteins/genetics*
		                        			
		                        		
		                        	
4.Butyrate acts as a G-protein-coupled receptor ligand that prevents high glucose-induced amyloidogenesis in N2a cells through the protein kinase B/glycogen synthase kinase-3β pathway.
Yujie XU ; Shufang SHAN ; Xiaoyu WANG ; Lingli LI ; Liang MA ; Jingyuan XIONG ; Ping FU ; Guo CHENG
Chinese Medical Journal 2023;136(19):2368-2370
5.SHED-derived exosomes ameliorate hyposalivation caused by Sjögren's syndrome via Akt/GSK-3β/Slug-mediated ZO-1 expression.
Zhihao DU ; Pan WEI ; Nan JIANG ; Liling WU ; Chong DING ; Guangyan YU
Chinese Medical Journal 2023;136(21):2596-2608
		                        		
		                        			BACKGROUND:
		                        			Sjögren's syndrome (SS) is an autoimmune disorder characterized by sicca syndrome and/or systemic manifestations. The treatment is still challenging. This study aimed to explore the therapeutic role and mechanism of exosomes obtained from the supernatant of stem cells derived from human exfoliated deciduous teeth (SHED-exos) in sialadenitis caused by SS.
		                        		
		                        			METHODS:
		                        			SHED-exos were administered to the submandibular glands (SMGs) of 14-week-old non-obese diabetic (NOD) mice, an animal model of the clinical phase of SS, by local injection or intraductal infusion. The saliva flow rate was measured after pilocarpine intraperitoneal injection in 21-week-old NOD mice. Protein expression was examined by western blot analysis. Exosomal microRNA (miRNAs) were identified by microarray analysis. Paracellular permeability was evaluated by transepithelial electrical resistance measurement.
		                        		
		                        			RESULTS:
		                        			SHED-exos were injected into the SMG of NOD mice and increased saliva secretion. The injected SHED-exos were taken up by glandular epithelial cells, and further increased paracellular permeability mediated by zonula occluden-1 (ZO-1). A total of 180 exosomal miRNAs were identified from SHED-exos, and Kyoto Encyclopedia of Genes and Genomes analysis suggested that the phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt) pathway might play an important role. SHED-exos treatment down-regulated phospho-Akt (p-Akt)/Akt, phospho-glycogen synthase kinase 3β (p-GSK-3β)/GSK-3β, and Slug expressions and up-regulated ZO-1 expression in SMGs and SMG-C6 cells. Both the increased ZO-1 expression and paracellular permeability induced by SHED-exos were abolished by insulin-like growth factor 1, a PI3K agonist. Slug bound to the ZO-1 promoter and suppressed its expression. For safer and more effective clinical application, SHED-exos were intraductally infused into the SMGs of NOD mice, and saliva secretion was increased and accompanied by decreased levels of p-Akt/Akt, p-GSK-3β/GSK-3β, and Slug and increased ZO-1 expression.
		                        		
		                        			CONCLUSION
		                        			Local application of SHED-exos in SMGs can ameliorate Sjögren syndrome-induced hyposalivation by increasing the paracellular permeability of glandular epithelial cells through Akt/GSK-3β/Slug pathway-mediated ZO-1 expression.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Sjogren's Syndrome/therapy*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Tight Junctions/metabolism*
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta
		                        			;
		                        		
		                        			Mice, Inbred NOD
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Exosomes/metabolism*
		                        			;
		                        		
		                        			Xerostomia
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinase
		                        			;
		                        		
		                        			MicroRNAs/genetics*
		                        			
		                        		
		                        	
6.Marsdenia tenacissima injection induces the apoptosis of prostate cancer by regulating the AKT/GSK3β/STAT3 signaling axis.
Xiaolan LI ; Songhua HE ; Wei LIANG ; Weiquan ZHANG ; Xin CHEN ; Qiaofeng LI ; Xin YANG ; Yanying LIU ; Dan ZHU ; Li LI ; Buming LIU ; Zhiheng SU ; Jie CHEN ; Hongwei GUO
Chinese Journal of Natural Medicines (English Ed.) 2023;21(2):113-126
		                        		
		                        			
		                        			Marsdenia tenacissima injection, a standard Marsdenia tenacissima extract (MTE), has been approved as an adjuvant therapeutic agent for various cancers. Our previous study showed that MTE inhibited the proliferation and metastasis of prostate cancer (PCa) cells. However, the underlying mechanisms and active ingredients of MTE against PCa were not completely understood. This study revealed that MTE induced significant decreases in cell viability and clonal growth in PCa cells. In addition, MTE induced the apoptosis of DU145 cells by reducing the mitochondrial membrane potential and increasing the expression of Cleaved Caspase 3/7, Cyt c, and Bax. In vivo, DU145 xenografted NOD-SCID mice treated with MTE showed significantly decreased tumor size. TUNEL staining and Western blot confirmed the pro-apoptotic effects of MTE. Network pharmacology analysis collected 196 ingredients of MTE linked to 655 potential targets, and 709 PCa-associated targets were retrieved, from which 149 overlapped targets were screened out. Pathway enrichment analysis showed that the HIF-1, PI3K-AKT, and ErbB signaling pathways were closely related to tumor apoptosis. Western blot results confirmed that MTE increased the expression of p-AKTSer473 and p-GSK3βSer9, and decreased the expression of p-STAT3Tyr705in vitro and in vivo. A total of 13 compounds in MTE were identified by HPLC-CAD-QTOF-MS/MS and UPLC-QTOF-MS/MS. Molecular docking analysis indicated that six compounds may interact with AKT, GSK3β, and STAT3. In conclusion, MTE induces the endogenous mitochondrial apoptosis of PCa by regulating the AKT/GSK3β/STAT3 signaling axis, resulting in inhibition of PCa growth in vitro and in vivo.
		                        		
		                        		
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice, Inbred NOD
		                        			;
		                        		
		                        			Mice, SCID
		                        			;
		                        		
		                        			Marsdenia
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta
		                        			;
		                        		
		                        			Molecular Docking Simulation
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			Tandem Mass Spectrometry
		                        			;
		                        		
		                        			Prostatic Neoplasms
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			STAT3 Transcription Factor
		                        			
		                        		
		                        	
7.Shenbai Jiedu Fang inhibits AOM/DSS-induced colorectal adenoma formation and carcinogenesis in mice via miRNA-22-mediated regulation of the PTEN/PI3K/AKT signaling pathway.
Jian Rong LIU ; Wei Xing SHEN ; Hai Bo CHENG ; Min Min FAN ; Jun XIAO ; Chang Liang XU ; Jia Ni TAN ; Yue Yang LAI ; Cheng Tao YU ; Dong Dong SUN ; Liu LI
Journal of Southern Medical University 2022;42(10):1452-1461
		                        		
		                        			OBJECTIVE:
		                        			To observe the inhibitory effect of Shenbai Jiedu Fang (SBJDF, a compound recipe of traditional Chinese herbal drugs) on chemically induced carcinogenesis of colorectal adenoma in mice and explore the role of PTEN/PI3K/AKT signaling pathway in mediating this effect.
		                        		
		                        			METHODS:
		                        			Four-week-old male C57BL/6 mice were randomly divided into control group (n=10), AOM/DSS model group (n=20), low-dose (14 g/kg) SBJDF group (n=10) and high-dose (42 g/kg) SBJDF group (n= 10). In the latter 3 groups, the mice were treated with azoxymethane (AOM) and dextran sodium sulphate (DSS) to induce carcinogenesis of colorectal adenoma. In the two SBJDF treatment groups, SBJDF was administered daily by gavage during the modeling. The survival rate, body weight, general condition of the mice, and intestinal adenoma formation and carcinogenesis were observed. The expressions of proteins associated with the PTEN/PI3K/AKT signaling pathway in the intestinal tissue were detected using immunohistochemistry.
		                        		
		                        			RESULTS:
		                        			Compared with those in the model group, the mice treated with SBJDF, especially at the high dose, showed a significantly lower incidence of intestinal carcinogenesis and had fewer intestinal tumors with smaller tumor volume. Pathological examination showed the occurrence of adenocarcinoma in the model group, while only low-grade and high-grade neoplasia were found in low-dose SBJDF group; the mice treated with high-dose SBJDF showed mainly normal mucosal tissues in the intestines with only a few lesions of low-grade neoplasia of adenoma. Compared with those in the control group, the mice in the model group had significantly elevated plasma miRNA-222 level (P < 0.05), which was obviously lowered in the two SBJDF groups (P < 0.01). The results of immunohistochemistry revealed that compared with the model group, the two SBJDF groups, especially the high-dose group, had significantly up-regulated expressions of PTEN, P-PTEN and GSK-3β and down-regulated expressions of p-GSK-3 β, PI3K, AKT, P-AKT, β-catenin, c-myc, cyclinD1 and survivin in the intestinal tissues.
		                        		
		                        			CONCLUSION
		                        			SBJDF can significantly inhibit colorectal adenoma formation and carcino-genesis in mice possibly through regulating miRNA-222 and affecting PTEN/PI3K/AKT signaling pathway.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Adenoma/prevention & control*
		                        			;
		                        		
		                        			Azoxymethane/adverse effects*
		                        			;
		                        		
		                        			Carcinogenesis/drug effects*
		                        			;
		                        		
		                        			Colorectal Neoplasms/prevention & control*
		                        			;
		                        		
		                        			Dextran Sulfate/adverse effects*
		                        			;
		                        		
		                        			Disease Models, Animal
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/metabolism*
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			MicroRNAs/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Drugs, Chinese Herbal/therapeutic use*
		                        			
		                        		
		                        	
8.Research progress on mechanism of Carthamus tinctorius in ischemic stroke therapy.
Jun-Ren CHEN ; Xiao-Fang XIE ; Xiao-Yu CAO ; Gang-Min LI ; Yan-Peng YIN ; Cheng PENG
China Journal of Chinese Materia Medica 2022;47(17):4574-4582
		                        		
		                        			
		                        			Carthamus tinctorius is proved potent in treating ischemic stroke. Flavonoids, such as safflower yellow, hydroxysafflor yellow A(HSYA), nicotiflorin, safflower yellow B, and kaempferol-3-O-rutinoside, are the main substance basis of C. tinctorius in the treatment of ischemic stroke, and HSYA is the research hotspot. Current studies have shown that C. tinctorius can prevent and treat ischemic stroke by reducing inflammation, oxidative stress, and endoplasmic reticulum stress, inhibiting neuronal apoptosis and platelet aggregation, as well as increasing blood flow. C. tinctorius can regulate the pathways including nuclear factor(NF)-κB, mitogen-activated protein kinase(MAPK), signal transducer and activator of transcription protein 3(STAT3), and NF-κB/NLR family pyrin domain containing 3(NLRP3), and inhibit the activation of cyclooxygenase-2(COX-2)/prostaglandin D2/D prostanoid receptor pathway to alleviate the inflammatory development during ischemic stroke. Additionally, C. tinctorius can relieve oxidative stress injury by inhibiting oxidation and nitrification, regulating free radicals, and mediating nitric oxide(NO)/inducible nitric oxide synthase(iNOS) signals. Furthermore, mediating the activation of Janus kinase 2(JAK2)/STAT3/suppressor of cytokine signaling 3(SOCS3) signaling pathway and phosphoinositide 3-kinase(PI3 K)/protein kinase B(Akt)/glycogen synthase kinase-3β(GSK3β) signaling pathway and regulating the release of matrix metalloproteinase(MMP) inhibitor/MMP are main ways that C. tinctorius inhibits neuronal apoptosis. In addition, C. tinctorius exerts the therapeutic effect on ischemic stroke by regulating autophagy and endoplasmic reticulum stress. The present study reviewed the molecular mechanisms of C. tinctorius in the treatment of ischemic stroke to provide references for the clinical application of C. tinctorius.
		                        		
		                        		
		                        		
		                        			Carthamus tinctorius/chemistry*
		                        			;
		                        		
		                        			Chalcone/therapeutic use*
		                        			;
		                        		
		                        			Cyclooxygenase 2/metabolism*
		                        			;
		                        		
		                        			Cytokines/metabolism*
		                        			;
		                        		
		                        			Flavonoids/therapeutic use*
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/metabolism*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Ischemic Stroke/drug therapy*
		                        			;
		                        		
		                        			Janus Kinase 2/metabolism*
		                        			;
		                        		
		                        			Mitogen-Activated Protein Kinases/metabolism*
		                        			;
		                        		
		                        			NF-kappa B/metabolism*
		                        			;
		                        		
		                        			NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
		                        			;
		                        		
		                        			Nitric Oxide/metabolism*
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type II/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinase/metabolism*
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases/metabolism*
		                        			;
		                        		
		                        			Prostaglandin D2
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Quinones/pharmacology*
		                        			
		                        		
		                        	
9.Ershiwuwei Shanhu Pills regulate Akt/mTOR/GSK-3β signaling pathway to alleviate Alzheimer's disease mice.
Xiao-Min LUO ; Bo-Yu ZHANG ; Yi DING ; Cun-Ping WANG ; Qiu-Lin LUO ; Rui TAN ; Jian GU ; Pu-Yang GONG
China Journal of Chinese Materia Medica 2022;47(8):2074-2081
		                        		
		                        			
		                        			The present study investigated the mechanism of the Tibetan patent medicine Ershiwuwei Shanhu Pills(ESP) in alleviating Alzheimer's disease in mice via Akt/mTOR/GSK-3β signaling pathway. BALB/c mice were randomly assigned into a blank control group, a model group, low(200 mg·kg~(-1)), medium(400 mg·kg~(-1)) and high(800 mg·kg~(-1)) dose groups of ESP, and donepezil hydrochloride group. Except the blank control group, the other groups were given 20 mg·kg~(-1) aluminum chloride by gavage and 120 mg·kg~(-1) D-galactose by intraperitoneal injection for 56 days to establish Alzheimer's disease model. Morris water maze was used to detect the learning and memory ability of mice. The level of p-tau protein in mouse hippocampus and the levels of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in hippocampus and serum were detected. Hematoxylin-eosin staining and Nissl staining were performed for the pathological observation of whole brain in mice. TdT-mediated dUTP nick-end labeling(TUNEL) staining was employed for the observation of apoptosis in mouse cortex. Western blot was adopted to detect the protein levels of p-mTOR, p-Akt, and GSK-3β in the hippocampus. Compared with the model group, the ESP groups showcased alleviated pathological damage of the whole brain, decreased TUNEL positive cells, reduced level of p-tau protein in hippocampus, and risen SOD, CAT, and T-AOC levels and declined MDA level in hippocampus and serum. Furthermore, the ESP groups had up-regulated protein levels of p-mTOR and p-Akt while down-regulated protein level of GSK-3β in hippocampus. Therefore, ESP can alleviate the learning and memory decline and oxidative damage in mice with Alzheimer's disease induced by D-galactose combined with aluminum chloride, which may be related to Akt/mTOR/GSK-3β signaling pathway.
		                        		
		                        		
		                        		
		                        			Aluminum Chloride/adverse effects*
		                        			;
		                        		
		                        			Alzheimer Disease/drug therapy*
		                        			;
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Galactose/metabolism*
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta/metabolism*
		                        			;
		                        		
		                        			Hippocampus/metabolism*
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Inbred BALB C
		                        			;
		                        		
		                        			Plant Extracts
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt/metabolism*
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Superoxide Dismutase/metabolism*
		                        			;
		                        		
		                        			TOR Serine-Threonine Kinases/metabolism*
		                        			;
		                        		
		                        			tau Proteins
		                        			
		                        		
		                        	
10.STE029 Overcomes EGFR-TKI Resistance in Human Lung Adenocarcinoma.
Lin HUANG ; Mei HOU ; Jiewei LIU ; Yang LI ; Wang SHEN ; Qinghua ZHOU
Chinese Journal of Lung Cancer 2022;25(11):771-781
		                        		
		                        			BACKGROUND:
		                        			Acquired and primary resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) is still the bottleneck of clinical treatment of advanced non-small cell lung cancer (NSCLC). STE029 is a novel anticancer drug which consists of 3-hydroxy-3-methylglutarylcoenzyme A reductase (HMGCR) inhibitor and novel cancer cell membrane targeting molecular. This study aimed to investigate the reversal mechanism of EGFR-TKI resistance by STE029 in lung adenocarcinoma.
		                        		
		                        			METHODS:
		                        			CCK8 test was used to test the cell viability and survival rate of EGFR mutated PC9 cell (Gefitinib sensitive), PC9/BB4 cell (acquired Gefitinib resistant), and EGFR wild type A549 cell after treatment of STE029, Gefitinib or combination of both. EdU test was applied to detect changes in cell cycle and Hoechst 33258 was applied to detect apoptosis rate in overcoming the EGFR-TKI resistance. The activity of EGFR/PI3K/Akt, cell cycle and apoptosis signal pathways were examined. In vivo, nude mice were exposed to STE029, Gefitinib and STE029+Gefitinib for 5 wk. And the the tumor volume was measured and tumor weight was obtained on the last day.
		                        		
		                        			RESULTS:
		                        			(1) PC9 cells was highly sensitive to Gefitinib, while PC9/BB4 and A549 cell showed significant resistance to Gefitinib treatment; (2) STE029+Gefitinib treatment could significantly decrease the 50% inhibitory concentrarion (IC₅₀) of Gefitinib in PC9, PC9/BB4 and A549 cells (P<0.05, respectively); (3) In PC9 and PC9/BB4 cells, STE029+Gefitinib can block cell cycle and inhibit cell proliferation (P<0.001), while there was no significant difference in apoptosis rate among three drug intervention groups (P>0.05); However, apoptosis rate was increased in STE029+Gefitinib group in A549 cell (P<0.01), while no significance detected in cell proliferation (P>0.05). (4) In PC9 and PC9/BB4 cells, the combination of STE029 and Gefitinib could downregulate p-EGFR, p-Akt, p-Cyclin D1 and Cyclin D1 (P<0.001), and upregulate the expression of GSK-3β (P<0.001), and the expression of cleaved caspase-8, caspase-8 cleaved caspase-9, caspase-9 showed no difference among groups (P>0.05). In A549 cells, the combination of STE029 and Gefitinib could downregulate p-Akt (P<0.001) and upregulate cleaved caspase-8 and cleaved caspase-9 (P<0.001); (5)In vivo, the combination of STE029 and Gefitinib effectively inhibited tumor development and progression compared to STE029 alone or Gefitinib alone, with significant difference (P<0.05) in PC9 and PC9/BB4 xenografted tumor.
		                        		
		                        			CONCLUSIONS
		                        			STE029 could sensitize Gefitinib by inhibiting EGFR/PI3K/Akt pathway, blocking the tumor cell cycle and proliferation and inducing apoptosis through caspase-8 and caspase-9 dependent pathway. STE029 deserves further investigations in overcoming EGFR-TKI resistance in lung cancer.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Gefitinib/pharmacology*
		                        			;
		                        		
		                        			Caspase 9
		                        			;
		                        		
		                        			Caspase 8
		                        			;
		                        		
		                        			Cyclin D1
		                        			;
		                        		
		                        			Carcinoma, Non-Small-Cell Lung
		                        			;
		                        		
		                        			Glycogen Synthase Kinase 3 beta
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Phosphatidylinositol 3-Kinases
		                        			;
		                        		
		                        			Proto-Oncogene Proteins c-akt
		                        			;
		                        		
		                        			Lung Neoplasms/genetics*
		                        			;
		                        		
		                        			Adenocarcinoma of Lung/drug therapy*
		                        			;
		                        		
		                        			Protein Kinase Inhibitors/pharmacology*
		                        			;
		                        		
		                        			ErbB Receptors/genetics*
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail