1.Rhodiolae Crenulatae Radix et Rhizoma protects brain microvascular endothelial cells from ischemia and hypoxia injury by regulating PI3K/AKT/GSK3β pathway.
Li TANG ; Qiu-Yue YANG ; Hong-Fa CHENG ; Ya-Hui XIE ; Qiu-Xia ZHANG
China Journal of Chinese Materia Medica 2025;50(11):3127-3136
This study elucidates the mechanism of Rhodiolae Crenulatae Radix et Rhizoma(RCRR) in protecting brain microvascular endothelial cells from oxygen-glucose deprivation(OGD) injury and reveals the modern pharmacological mechanism of RCRR's traditional use in nourishing Qi and promoting blood circulation to protect endothelial cells. The scratch assay was employed to assess the migratory capacity of endothelial cells. Immunofluorescence and Western blot techniques were employed to assess the protein expression of tight junction proteins zonula occludens-1(ZO-1), occludin, claudin-5, and proteins of the phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)/glycogen synthase kinase-3beta(GSK3β) pathway. The results demonstrated that 63 bioactive components and 125 potential core targets of RCRR were identified from the ETCM, TCMBank, and SwissTargetPrediction databases, as well as from the literature. A total of 1 708 brain microvascular endothelial cell-related targets were identified from the GeneCards and OMIM databases, and 52 targets were obtained by intersecting drug components with cell targets. The protein-protein interaction(PPI) network analysis revealed that AKT1, epidermal growth factor receptor(EGFR), matrix metalloproteinase 9(MMP9), estrogen receptor 1(ESR1), proto-oncogene tyrosine-protein kinase(SRC), peroxisome proliferator-activated receptor gamma(PPARG), GSK3β, and matrix metalloproteinase 2(MMP2) were considered hub genes. The KEGG enrichment analysis identified the PI3K/AKT pathway as the primary signaling pathway. Cell experiments demonstrated that RCRR-containing serum could enhance the migratory capacity of brain microvascular endothelial cells and the expression of tight junction proteins following OGD injury, which may be associated with the downregulation of the PI3K/AKT/GSK3β pathway. This study elucidates the pharmacological mechanism of RCRR in protecting brain microvascular endothelial cells through network pharmacology, characterized by multiple components and targets. These findings were validated through in vitro experiments and provide important ideas and references for further research into the molecular mechanisms of RCRR in protecting brain microvascular endothelial cells.
Endothelial Cells/cytology*
;
Glycogen Synthase Kinase 3 beta/genetics*
;
Proto-Oncogene Proteins c-akt/genetics*
;
Drugs, Chinese Herbal/pharmacology*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Signal Transduction/drug effects*
;
Brain/metabolism*
;
Humans
;
Animals
;
Rhizome/chemistry*
;
Microvessels/metabolism*
;
Brain Ischemia/drug therapy*
2.Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease.
Junqiu HE ; Shan SUN ; Hongfeng WANG ; Zheng YING ; Kin Yip TAM
Neuroscience Bulletin 2025;41(5):821-836
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Animals
;
Alzheimer Disease/genetics*
;
Mice, Transgenic
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Disease Models, Animal
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Cholinesterase Inhibitors/therapeutic use*
;
Humans
;
Autophagy/drug effects*
;
Cognitive Dysfunction/pathology*
;
Neuroprotective Agents/pharmacology*
3.Ershiwuwei Shanhu Pills regulate Akt/mTOR/GSK-3β signaling pathway to alleviate Alzheimer's disease mice.
Xiao-Min LUO ; Bo-Yu ZHANG ; Yi DING ; Cun-Ping WANG ; Qiu-Lin LUO ; Rui TAN ; Jian GU ; Pu-Yang GONG
China Journal of Chinese Materia Medica 2022;47(8):2074-2081
The present study investigated the mechanism of the Tibetan patent medicine Ershiwuwei Shanhu Pills(ESP) in alleviating Alzheimer's disease in mice via Akt/mTOR/GSK-3β signaling pathway. BALB/c mice were randomly assigned into a blank control group, a model group, low(200 mg·kg~(-1)), medium(400 mg·kg~(-1)) and high(800 mg·kg~(-1)) dose groups of ESP, and donepezil hydrochloride group. Except the blank control group, the other groups were given 20 mg·kg~(-1) aluminum chloride by gavage and 120 mg·kg~(-1) D-galactose by intraperitoneal injection for 56 days to establish Alzheimer's disease model. Morris water maze was used to detect the learning and memory ability of mice. The level of p-tau protein in mouse hippocampus and the levels of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and total antioxidant capacity(T-AOC) in hippocampus and serum were detected. Hematoxylin-eosin staining and Nissl staining were performed for the pathological observation of whole brain in mice. TdT-mediated dUTP nick-end labeling(TUNEL) staining was employed for the observation of apoptosis in mouse cortex. Western blot was adopted to detect the protein levels of p-mTOR, p-Akt, and GSK-3β in the hippocampus. Compared with the model group, the ESP groups showcased alleviated pathological damage of the whole brain, decreased TUNEL positive cells, reduced level of p-tau protein in hippocampus, and risen SOD, CAT, and T-AOC levels and declined MDA level in hippocampus and serum. Furthermore, the ESP groups had up-regulated protein levels of p-mTOR and p-Akt while down-regulated protein level of GSK-3β in hippocampus. Therefore, ESP can alleviate the learning and memory decline and oxidative damage in mice with Alzheimer's disease induced by D-galactose combined with aluminum chloride, which may be related to Akt/mTOR/GSK-3β signaling pathway.
Aluminum Chloride/adverse effects*
;
Alzheimer Disease/drug therapy*
;
Animals
;
Galactose/metabolism*
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Hippocampus/metabolism*
;
Mice
;
Mice, Inbred BALB C
;
Plant Extracts
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Superoxide Dismutase/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
tau Proteins
4.Shenbai Jiedu Fang inhibits AOM/DSS-induced colorectal adenoma formation and carcinogenesis in mice via miRNA-22-mediated regulation of the PTEN/PI3K/AKT signaling pathway.
Jian Rong LIU ; Wei Xing SHEN ; Hai Bo CHENG ; Min Min FAN ; Jun XIAO ; Chang Liang XU ; Jia Ni TAN ; Yue Yang LAI ; Cheng Tao YU ; Dong Dong SUN ; Liu LI
Journal of Southern Medical University 2022;42(10):1452-1461
OBJECTIVE:
To observe the inhibitory effect of Shenbai Jiedu Fang (SBJDF, a compound recipe of traditional Chinese herbal drugs) on chemically induced carcinogenesis of colorectal adenoma in mice and explore the role of PTEN/PI3K/AKT signaling pathway in mediating this effect.
METHODS:
Four-week-old male C57BL/6 mice were randomly divided into control group (n=10), AOM/DSS model group (n=20), low-dose (14 g/kg) SBJDF group (n=10) and high-dose (42 g/kg) SBJDF group (n= 10). In the latter 3 groups, the mice were treated with azoxymethane (AOM) and dextran sodium sulphate (DSS) to induce carcinogenesis of colorectal adenoma. In the two SBJDF treatment groups, SBJDF was administered daily by gavage during the modeling. The survival rate, body weight, general condition of the mice, and intestinal adenoma formation and carcinogenesis were observed. The expressions of proteins associated with the PTEN/PI3K/AKT signaling pathway in the intestinal tissue were detected using immunohistochemistry.
RESULTS:
Compared with those in the model group, the mice treated with SBJDF, especially at the high dose, showed a significantly lower incidence of intestinal carcinogenesis and had fewer intestinal tumors with smaller tumor volume. Pathological examination showed the occurrence of adenocarcinoma in the model group, while only low-grade and high-grade neoplasia were found in low-dose SBJDF group; the mice treated with high-dose SBJDF showed mainly normal mucosal tissues in the intestines with only a few lesions of low-grade neoplasia of adenoma. Compared with those in the control group, the mice in the model group had significantly elevated plasma miRNA-222 level (P < 0.05), which was obviously lowered in the two SBJDF groups (P < 0.01). The results of immunohistochemistry revealed that compared with the model group, the two SBJDF groups, especially the high-dose group, had significantly up-regulated expressions of PTEN, P-PTEN and GSK-3β and down-regulated expressions of p-GSK-3 β, PI3K, AKT, P-AKT, β-catenin, c-myc, cyclinD1 and survivin in the intestinal tissues.
CONCLUSION
SBJDF can significantly inhibit colorectal adenoma formation and carcino-genesis in mice possibly through regulating miRNA-222 and affecting PTEN/PI3K/AKT signaling pathway.
Animals
;
Male
;
Mice
;
Adenoma/prevention & control*
;
Azoxymethane/adverse effects*
;
Carcinogenesis/drug effects*
;
Colorectal Neoplasms/prevention & control*
;
Dextran Sulfate/adverse effects*
;
Disease Models, Animal
;
Glycogen Synthase Kinase 3 beta/metabolism*
;
Mice, Inbred C57BL
;
MicroRNAs/metabolism*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Signal Transduction
;
Drugs, Chinese Herbal/therapeutic use*
5.Salvianolic Acid A Protects Neonatal Cardiomyocytes Against Hypoxia/Reoxygenation-Induced Injury by Preserving Mitochondrial Function and Activating Akt/GSK-3β Signals.
Xue-Li LI ; Ji-Ping FAN ; Jian-Xun LIU ; Li-Na LIANG
Chinese journal of integrative medicine 2019;25(1):23-30
OBJECTIVE:
To investigate the effects of salvianolic acid A (SAA) on cardiomyocyte apoptosis and mitochondrial dysfunction in response to hypoxia/reoxygenation (H/R) injury and to determine whether the Akt signaling pathway might play a role.
METHODS:
An in vitro model of H/R injury was used to study outcomes on primary cultured neonatal rat cardiomyocytes. The cardiomyocytes were treated with 12.5, 25, 50 μg/mL SAA at the beginning of hypoxia and reoxygenation, respectively. Adenosine triphospate (ATP) and reactive oxygen species (ROS) levels were assayed. Cell apoptosis was evaluated by flow cytometry and the expression of cleaved-caspase 3, Bax and Bcl-2 were detected by Western blotting. The effects of SAA on mitochondrial dysfunction were examined by determining the mitochondrial membrane potential (△Ψm) and mitochondrial permeability transition pore (mPTP), followed by the phosphorylation of Akt (p-Akt) and GSK-3β (p-GSK-3β), which were measured by Western blotting.
RESULTS:
SAA significantly preserved ATP levels and reduced ROS production. Importantly, SAA markedly reduced the number of apoptotic cells and decreased cleaved-caspase 3 expression levels, while also reducing the ratio of Bax/Bcl-2. Furthermore, SAA prevented the loss of △Ψm and inhibited the activation of mPTP. Western blotting experiments further revealed that SAA significantly increased the expression of p-Akt and p-GSK-3β, and the increase in p-GSK-3β expression was attenuated after inhibition of the Akt signaling pathway with LY294002.
CONCLUSION
SAA has a protective effect on cardiomyocyte H/R injury; the underlying mechanism may be related to the preservation of mitochondrial function and the activation of the Akt/GSK-3β signaling pathway.
Adenosine Triphosphate
;
analysis
;
Animals
;
Animals, Newborn
;
Caffeic Acids
;
pharmacology
;
Cell Hypoxia
;
Cells, Cultured
;
Glycogen Synthase Kinase 3 beta
;
physiology
;
Lactates
;
pharmacology
;
Mitochondria, Heart
;
drug effects
;
physiology
;
Mitochondrial Membrane Transport Proteins
;
drug effects
;
Myocytes, Cardiac
;
drug effects
;
Proto-Oncogene Proteins c-akt
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species
;
metabolism
;
Signal Transduction
;
physiology
6.Icariin protects SH-SY5Y cells from formaldehyde-induced injury through suppression of Tau phosphorylation.
Yi-Xiang SONG ; Jun-Ye MIAO ; Min QIANG ; Rong-Qiao HE ; Xue-Mei WANG ; Wei-Wei LI
Chinese journal of integrative medicine 2016;22(6):430-437
OBJECTIVETo investigate the neuroprotective effects of icariin on formaldehyde (FA)-treated human neuroblastoma SH-SY5Y cells and the possible mechanisms involved.
METHODSSH-SY5Y cells were divided into FA treatment group, FA treatment group with icariin, and the control group. Cell viability, apoptosis, and morphological changes were determined by cell counting kit-8 (CCK 8), flow cytometry, and confocal microscopy, respectively. The phosphorylation of Tau protein was examined by western blotting.
RESULTSFA showed a half lethal dose (LD50) of 0.3 mmol/L in SH-SY5Y cells under the experimental conditions. Icariin (1-10 µmol/L) prevented FA-induced cell death in SH-SY5Y cells in a dose-dependent manner, with the optimal effect observed at 5 µmol/L. After FA treatment, the absorbance in FA group was 1.31±0.05, while in the group of icariin (5 µmol/L) was 1.63±0.05. Examination of cell morphology by confocal microscopy demonstrated that 5 µmol/L icariin significantly attenuated FA-induced cell injury (P <0.05). Additionally, Icariin inhibited FA-induced cell apoptosis in SH-SY5Y cells. Results from western blotting showed that icariin suppressed FA-induced phosphorylation at Thr 181 and Ser 396 of Tau protein, while having no effect on the expression of the total Tau protein level. Furthermore, FA activated Tau kinase glycogen synthase kinase 3 beta (GSK-3β) by enhancement of Y216 phosphorylation, but icariin reduced Y216 phosphorylation and increased Ser 9 phosphorylation.
CONCLUSIONIcariin protects SH-SY5Y cells from FA-induced injury poßsibly through the inhibition of GSK-3β-mediated Tau phosphorylation.
Blotting, Western ; Cell Death ; drug effects ; Cell Line, Tumor ; Cell Shape ; drug effects ; Cell Survival ; drug effects ; DNA Fragmentation ; drug effects ; Flavonoids ; pharmacology ; Formaldehyde ; Glycogen Synthase Kinase 3 beta ; antagonists & inhibitors ; metabolism ; Humans ; Neuroprotective Agents ; pharmacology ; Phosphorylation ; drug effects ; tau Proteins ; metabolism
7.TPPU protects tau from HO-induced hyperphosphorylation in HEK293/tau cells by regulating PI3K/AKT/GSK-3β pathway.
En-Sheng YAO ; Yan TANG ; Xing-Hua LIU ; Ming-Huan WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(6):785-790
Neurofibrillary pathology of abnormally hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD) and other tauopathies. Phosphatidylinositol 3-kinase (PI3K)/Akt/glycogen synthase kinase-3 beta (GSK-3β) signaling pathway is pivotal for tau phosphorylation. Inhibition of soluble epoxide hydrolase (sEH) metabolism has been shown to effectively increase the accumulation of epoxyeicosatrienoic acids (EETs), which are cytochrome P450 metabolites of arachidonic acid and have been demonstrated to have neuroprotective effects. However, little is known about the role of sEH in tau phosphorylation. The present study investigated the role of a sEH inhibitor, 1-(1-propanoylpiperidin-4-yl)-3-[4-(trifluoromethoxy)phenyl] urea (TPPU), on HO-induced tau phosphorylation and the underlying signaling pathway in human embryonic kidney 293 (HEK293)/Tau cells. We found that the cell viability was increased after TPPU treatment compared to control in oxidative stress. Western blotting and immunofluorescence results showed that the levels of phosphorylated tau at Thr231 and Ser396 sites were increased in HO-treated cells but dropped to normal levels after TPPU administration. HOinduced an obvious decreased phosphorylation of GSK-3β at Ser9, an inactive form of GSK-3β, while there were no changes of phosphorylation of GSK-3β at Tyr216. TPPU pretreatment maintained GSK-3β Ser 9 phosphorylation. Moreover, Western blotting results showed that TPPU upregulated the expression of p-Akt. The protective effects of TPPU were found to be inhibited by wortmannin (WT, a specific PI3K inhibitor). In conclusion, these results suggested that the protective effect of TPPU on HO-induced oxidative stress is associated with PI3K/Akt/GSK-3β pathway.
Cell Survival
;
drug effects
;
Enzyme Inhibitors
;
pharmacology
;
Glycogen Synthase Kinase 3 beta
;
metabolism
;
HEK293 Cells
;
Humans
;
Hydrogen Peroxide
;
toxicity
;
Oxidative Stress
;
Phenylurea Compounds
;
pharmacology
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Phosphorylation
;
Piperidines
;
pharmacology
;
Protein Processing, Post-Translational
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Signal Transduction
;
tau Proteins
;
metabolism
8.Stereotactic injection of shrna GSK-3β-AAV promotes axonal regeneration after spinal cord injury.
Yu-Chao ZUO ; Nan-Xiang XIONG ; Hong-Yang ZHAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):548-553
Evidence suggested that glycogen synthase kinase-3β (GSK-3β) is involved in Nogo-66 inhibiting axonal regeneration in vitro, but its effect in vivo was poorly understood. We showed that stereotactic injection of shRNA GSK-3β-adeno associated virus (GSK-3β-AAV) diminished syringomyelia and promoted axonal regeneration after spinal cord injury (SCI), using stereotactic injection of shRNA GSK-3β-AAV (tested with Western blotting and RT-PCR) into the sensorimotor cortex of rats with SCI and by the detection of biotin dextran amine (BDA)-labeled axonal regeneration. We also determined the right position to inject into the sensorimotor cortex. Our findings consolidate the hypothesis that downregulation of GSK-3β promotes axonal regeneration after SCI.
Animals
;
Axons
;
drug effects
;
metabolism
;
Dependovirus
;
genetics
;
Glycogen Synthase Kinase 3 beta
;
genetics
;
metabolism
;
Humans
;
Nerve Regeneration
;
genetics
;
RNA, Small Interfering
;
administration & dosage
;
genetics
;
Rats
;
Sensorimotor Cortex
;
drug effects
;
pathology
;
Spinal Cord Injuries
;
genetics
;
pathology
;
therapy
;
Syringomyelia
;
genetics
;
pathology
;
therapy
9.Molecular mechanism of cisplatin to enhance the ability of TRAIL in reversing multidrug resistance in gastric cancer cells.
Xingchao ZHU ; Kaiguang ZHANG ; Email: ZKG@MEDMAIL.COM.CN. ; Qiaomin WANG ; Si CHEN ; Yawen GOU ; Yufang CUI ; Qin LI
Chinese Journal of Oncology 2015;37(6):404-411
OBJECTIVETo study the molecular mechanism of cisplatin to enhance the ability of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in reversing multidrug resistance in vincristine-resistant human gastric cancer SGC7901/VCR cells.
METHODSMTT assay was used to measure the 50% inhibiting concentration (IC₅₀) and cell survival in SGC7901 and SGC7901/VCR cells after different treatments. SGC7901/VCR cells were treated with different concentrations of DDP, different concentrations of TRAIL alone or in combination, and then the mRNA and protein levels of several genes were determined by RT-PCR, RT-qPCR and Western-blot analysis. After targeted silencing with specific siRNA and transfection of recombinant plasmid c-myc into the SGC7901/VCR cells, the mRNA and protein levels of DR4, DR5 and c-myc were determined by RT-PCR and Western-blot analysis.
RESULTSAfter combined treatment with TRAIL and DDP of the SGC7901/VCR cells, the IC₅₀ of VCR, DDP, ADM, and 5-Fu treatment was significantly decreased compared with the control group or TRAIL-treated group (P < 0.05). After treatment with 0, 10, 50 ng/ml TRAIL in combination with 0.4 µg/ml DDP, the SGC7901/VCR cells showed significantly higher activation of caspase 3, down-regulation of DNA-PKcs/Akt/GSK-3β signaling pathway, and higher inhibition of MDR1(P-gp) and MRP1 than those treated with TRAIL alone (P < 0.01 for all). The mRNA and protein levels of DR4, DR5, c-myc were significantly decreased after silencing c-myc with specific siRNA in the SGC7901/VCR cells (P < 0.01 for all), and were significantly increased after transfection of recombinant plasmid c-myc into the SGC7901/VCR cells (P < 0.01 foe all). After the treatment with 10 ng/ml TRAIL, 0.25 µg/ml DDP + 10 ng/ml TRAIL and 0.5 µg/ml DDP + 10 ng/ml TRAIL, the relative expression level of c-myc protein in the SGC7901/VCR cells was 0.314 ± 0.012, 0.735 ± 0.026, and 0.876 ± 0.028, respectively, and the relative expression of cytochrome C was 0.339 ± 0.036, 0.593 ± 0.020 and 0.735 ± 0.031, respectively, and the relative expression levels of DR4, DR5, active-caspase 3 and active-caspase 9 in the SGC7901/VCR cells were also increased along with increasing DDP concentrations.
CONCLUSIONSThe activation of DNA-PKcs/Akt/GSK-3β signaling pathway and high expression of MDR1 and MRP1 play an important role in the multi-drug resistance properties of SGC7901/VCR cells. After combining with TRAIL, DDP can enhance the expression of DR4 and DR5 through up-regulating c-myc and enhancing the activation of caspase 3 and caspase 9 by facilitating mitochondrial release of cytochrome C. It may be an important molecular mechanism of DDP-induced sensitization of TRAIL to reverse the multidrug resistancein SGC7901/VCR cells.
ATP-Binding Cassette, Sub-Family B, Member 1 ; metabolism ; Antineoplastic Agents ; administration & dosage ; pharmacology ; Antineoplastic Combined Chemotherapy Protocols ; administration & dosage ; pharmacology ; Caspase 3 ; metabolism ; Caspase 9 ; metabolism ; Cell Line, Tumor ; Cisplatin ; administration & dosage ; pharmacology ; Down-Regulation ; Drug Resistance, Multiple ; drug effects ; Drug Resistance, Neoplasm ; drug effects ; Fluorouracil ; administration & dosage ; pharmacology ; Formazans ; Genes, myc ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; Inhibitory Concentration 50 ; Multidrug Resistance-Associated Proteins ; metabolism ; Neoplasm Proteins ; metabolism ; Plasmids ; Proto-Oncogene Proteins c-myc ; metabolism ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; pharmacology ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; metabolism ; Stomach Neoplasms ; drug therapy ; pathology ; TNF-Related Apoptosis-Inducing Ligand ; administration & dosage ; pharmacology ; Tetrazolium Salts ; Transfection ; methods
10.Mechanism of tanshinone II A in inhibiting transformation of aortic valvular myofibroblast to osteoblast-like phenotype.
Ying-nian SHEN ; Wei-lin HU ; Zheng-ping CHEN ; Li CAI ; Yong-sheng LI
China Journal of Chinese Materia Medica 2015;40(18):3636-3643
Aortic valve calcification (AVC) is a pathological process correlated with multiple disease causes and actively regulated by cardiac valve cells. In this study, porcine aortic valve myofibroblasts cultured in vitro were treated with 50 μg z L(-1) of pathological factor tumor necrosis factor α (TNF-α). Tanshinone II A (TSN) with the concentration of 50 mg x L(-1) and TNF-α were combined in incubating cells for 72 h (3 d) and 120 h (5 d). The Western blotting and Real-time PCR were adopted to detect the changes in smooth muscle α actin (α-SMA), bone morphogenetic protein 2 ( BMP2), alkaline phosphatase (ALP) in cells, and expressions of key effect proteins GSK-3β and β-catenin on Wnt/β-catenin signal pathway. According to the findings, TNF-α can significantly increase the expression of myofibroblasts α-SMA and add the transformation activity to them, with nearly no expression of BMP2, ALP and mRNA in the control group and the TSN group but significant increase in their expressions in the TNF-α group (P < 0.01), which showed osteoblast-like phenotype. Moreover, TNF-α down-regulated the expression of up-streaming regulator GSK-3β and mRNA expression (P < 0. 01) , notably increased the expression of key effect protein β-catenin, but with no significant difference in mRNA with the control group and the TSN group. The result demonstrated that TSN showed a certain inhibitory effect on TNF-α's pathological impact (P < 0.05) in a time-dependent manner. Inflammatory factor TNF-α may promote the transformation of aortic valvular myofibroblasts to osteoblast-like phenotype by activating Wnt/β-catenin signal pathway in aortic valvular myofibroblasts, so as to cause AVC. Tanshinone II A can have a preventive effect in AVC by activating GSK-3β proteins and regulating signal transduction of Wnt/β-catenin signal pathway.
Animals
;
Aortic Valve
;
cytology
;
drug effects
;
metabolism
;
Cells, Cultured
;
Diterpenes, Abietane
;
pharmacology
;
Drugs, Chinese Herbal
;
pharmacology
;
Glycogen Synthase Kinase 3
;
genetics
;
metabolism
;
Glycogen Synthase Kinase 3 beta
;
Myofibroblasts
;
cytology
;
drug effects
;
metabolism
;
Osteoblasts
;
cytology
;
drug effects
;
metabolism
;
Swine
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism
;
beta Catenin
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail