3.Analysis of lysosomal enzyme activity and genetic variants in a child with late-onset Pompe disease.
Tiantian HE ; Jieni JIANG ; Yueyue XIONG ; Dan YU ; Xuemei ZHANG
Chinese Journal of Medical Genetics 2023;40(6):711-717
OBJECTIVE:
To explore the clinical features, lysosomal enzymatic [acid α-glucosidase (GAA)] activities and genetic variants in a child with late-onset Pompe disease (LOPD).
METHODS:
Clinical data of a child who had presented at the Genetic Counseling Clinic of West China Second University Hospital in August 2020 was retrospectively analyzed. Blood samples were collected from the patient and her parents for the isolation of leukocytes and lymphocytes as well as DNA extraction. The activity of lysosomal enzyme GAA in leukocytes and lymphocytes was analyzed with or without addition of inhibitor of GAA isozyme. Potential variants in genes associated with neuromuscular disorders were analyzed, in addition with conservation of the variant sites and protein structure. The remaining samples from 20 individuals undergoing peripheral blood lymphocyte chromosomal karyotyping were mixed and used as the normal reference for the enzymatic activities.
RESULTS:
The child, a 9-year-old female, had featured delayed language and motor development from 2 years and 11 months. Physical examination revealed unstable walking, difficulty in going upstairs and obvious scoliosis. Her serum creatine kinase was significantly increased, along with abnormal electromyography, whilst no abnormality was found by cardiac ultrasound. Genetic testing revealed that she has harbored compound heterozygous variants of the GAA gene, namely c.1996dupG (p.A666Gfs*71) (maternal) and c.701C>T (p.T234M) (paternal). Based on the guidelines from the American College of Medical Genetics and Genomics, the c.1996dupG (p.A666Gfs*71) was rated as pathogenic (PVS1+PM2_Supporting+PM3), whilst the c.701C>T (p.T234M) was rated as likely pathogenic (PM1+PM2_Supporting+PM3+PM5+PP3). The GAA in the leukocytes from the patient, her father and mother were respectively 76.1%, 91.3% and 95.6% of the normal value without the inhibitor, and 70.8%, 112.9% and 128.2% of the normal value with the inhibitor, whilst the activity of GAA in their leukocytes had decreased by 6 ~ 9 times after adding the inhibitor. GAA in lymphocytes of the patient, her father and mother were 68.3%, 59.0% and 59.5% of the normal value without the inhibitor, and 41.0%, 89.5% and 57.7% of the normal value with the inhibitor, the activity of GAA in lymphocytes has decreased by 2 ~ 5 times after adding the inhibitor.
CONCLUSION
The child was diagnosed with LOPD due to the c.1996dupG and c.701C>T compound heterozygous variants of the GAA gene. The residual activity of GAA among LOPD patients can range widely and the changes may be atypical. The diagnosis of LOPD should not be based solely on the results of enzymatic activity but combined clinical manifestation, genetic testing and measurement of enzymatic activity.
Humans
;
Child
;
Male
;
Female
;
Glycogen Storage Disease Type II/pathology*
;
Retrospective Studies
;
alpha-Glucosidases/genetics*
;
Mothers
;
Lysosomes/pathology*
;
Mutation
4.Research progress of nervous system damage in Pompe disease.
Wen-Chao ZHANG ; Ying-Ying MAO ; Qian CHEN
Chinese Journal of Contemporary Pediatrics 2023;25(4):420-424
Pompe disease, also known as glycogen storage disease type Ⅱ, is a rare autosomal recessive disease. With the application of enzyme replacement therapy, more and more patients with Pompe disease can survive to adulthood, and nervous system-related clinical manifestations gradually emerge. Nervous system involvement seriously affects the quality of life of patients with Pompe disease, and a systematic understanding of the clinical manifestations, imaging features and pathological changes of nervous system injury in Pompe disease is of great significance for the early identification and intervention of Pompe disease. This article reviews the research progress of neurological damage in Pompe disease.
Humans
;
Glycogen Storage Disease Type II/drug therapy*
;
alpha-Glucosidases
;
Quality of Life
;
Enzyme Replacement Therapy
6.Activated mTOR signaling pathway in myofibers with inherited metabolic defect might be an evidence for mTOR inhibition therapies.
Jing-Wei LYU ; Xue-Bi XU ; Kun-Qian JI ; Na ZHANG ; Yuan SUN ; Dan-Dan ZHAO ; Yu-Ying ZHAO ; Chuan-Zhu YAN
Chinese Medical Journal 2019;132(7):805-810
BACKGROUND:
Abnormally activated mechanistic target of rapamycin (mTOR) pathway has been reported in several model animals with inherited metabolic myopathies (IMMs). However, the profiles of mTOR pathway in skeletal muscles from patients are still unknown. This study aimed to analyze the activity of mTOR pathway in IMMs muscles.
METHODS:
We collected muscle samples from 25 patients with mitochondrial myopathy (MM), lipid storage disease (LSD) or Pompe disease (PD). To evaluate the activity of mTOR pathway in muscle specimens, phosphorylation of S6 ribosomal protein (p-S6) and p70S6 kinase (p-p70S6K) were analyzed by Western blotting and immunohistochemistry.
RESULTS:
Western blotting results showed that p-p70S6K/p70S6K in muscles from LSD and MM was up-regulated when compared with normal controls (NC) (NC vs. LSD, U = 2.000, P = 0.024; NC vs. MM: U = 6.000, P = 0.043). Likewise, p-S6/S6 was also up-regulated in muscles from all three subgroups of IMMs (NC vs. LSD, U = 0.000, P = 0.006; NC vs. PD, U = 0.000, P = 0.006; NC vs. MM, U = 1.000, P = 0.007). Immunohistochemical study revealed that p-S6 was mainly expressed in fibers with metabolic defect. In MM muscles, most p-S6 positive fibers showed cytochrome C oxidase (COX) deficiency (U = 5.000, P = 0.001). In LSD and PD muscles, p-S6 was mainly overexpressed in fibers with intramuscular vacuoles containing lipid droplets (U = 0.000, P = 0.002) or basophilic materials (U = 0.000, P = 0.002).
CONCLUSION
The mTOR pathway might be activated in myofibers with various metabolic defects, which might provide evidence for mTOR inhibition therapy in human IMMs.
Adolescent
;
Adult
;
Aged
;
Blotting, Western
;
Child
;
Child, Preschool
;
Female
;
Glycogen Storage Disease Type II
;
genetics
;
metabolism
;
Humans
;
Immunohistochemistry
;
In Vitro Techniques
;
Lipid Metabolism, Inborn Errors
;
genetics
;
metabolism
;
Male
;
Middle Aged
;
Mitochondrial Myopathies
;
genetics
;
metabolism
;
Muscular Diseases
;
genetics
;
metabolism
;
Signal Transduction
;
genetics
;
physiology
;
TOR Serine-Threonine Kinases
;
metabolism
;
Young Adult
7.Clinical and molecular characterization of Korean children with infantile and late-onset Pompe disease: 10 years of experience with enzyme replacement therapy at a single center
Min Sun KIM ; Ari SONG ; Minji IM ; June HUH ; I Seok KANG ; Jinyoung SONG ; Aram YANG ; Jinsup KIM ; Eun Kyung KWON ; Eu Jin CHOI ; Sun Ju HAN ; Hyung Doo PARK ; Sung Yoon CHO ; Dong Kyu JIN
Korean Journal of Pediatrics 2019;62(6):224-234
PURPOSE: Pompe disease (PD) is an autosomal recessive disorder caused by a deficiency of acid alpha-glucosidase resulting from pathogenic GAA variants. This study describes the clinical features, genotypes, changes before and after enzyme replacement therapy (ERT), and long-term outcomes in patients with infantile-onset PD (IOPD) and late-onset PD (LOPD) at a tertiary medical center. METHODS: The medical records of 5 Korean patients (2 male, 3 female patients) diagnosed with PD between 2002 and 2013 at Samsung Medical Center in Seoul, Republic of Korea were retrospectively reviewed for data, including clinical and genetic characteristics at diagnosis and clinical course after ERT. RESULTS: Common initial symptoms included hypotonia, cyanosis, and tachycardia in patients with IOPD and limb girdle weakness in patients with LOPD. Electrocardiography at diagnosis revealed hypertrophic cardiomyopathy in all patients with IOPD who showed a stable disease course during a median follow-up period of 10 years. Patients with LOPD showed improved hepatomegaly and liver transaminase level after ERT. CONCLUSION: As ERT is effective for treatment of PD, early identification of this disease is very important. Thus, patients with IOPD should be considered candidates for clinical trials of new drugs in the future.
alpha-Glucosidases
;
Cardiomyopathy, Hypertrophic
;
Child
;
Cyanosis
;
Diagnosis
;
Electrocardiography
;
Enzyme Replacement Therapy
;
Extremities
;
Female
;
Follow-Up Studies
;
Genotype
;
Glycogen Storage Disease Type II
;
Hepatomegaly
;
Humans
;
Liver
;
Male
;
Medical Records
;
Muscle Hypotonia
;
Republic of Korea
;
Retrospective Studies
;
Seoul
;
Tachycardia
8.Research advances in the diagnosis and treatment of Pompe disease.
Chinese Journal of Contemporary Pediatrics 2018;20(7):588-593
Pompe disease, also called type II glycogen storage disease, is a rare autosomal recessive inherited disease caused by the storage of glycogen in lysosome due to acid α-glucosidase (GAA) deficiency, with the most severe conditions in the skeletal muscle, the myocardium, and the smooth muscle. Patients may have the manifestations of dyspnea and dyskinesia, with or without hypertrophic cardiomyopathy. GAA gene mutation has ethnic and regional differences, and new mutation sites are found with the advances in research. Gene analysis is the gold standard for the diagnosis of Pompe disease. Conventional methods, such as skin and muscle biopsies and dried blood spot test, have certain limitations for the diagnosis of this disease. In recent years, prenatal diagnosis and newborn screening play an important role in early diagnosis of this disease. Enzyme replacement therapy (ERT) has a satisfactory effect in the treatment of this disease, but it may lead to immune intolerance. New targeted gene therapy and modified ERT will be put into practice in the future. This article reviews the research advances in the diagnosis and treatment of Pompe disease.
Animals
;
Enzyme Replacement Therapy
;
Glycogen Storage Disease Type II
;
diagnosis
;
enzymology
;
genetics
;
therapy
;
Humans
;
Targeted Gene Repair
;
alpha-Glucosidases
;
genetics
;
metabolism
9.Pulmonary Hypertension in Glycogen Storage Disease Type II.
Hui-Ping LI ; Wan-Mu XIE ; Xu HUANG ; Xin LU ; Zhen-Guo ZHAI ; Qing-Yuan ZHAN ; Chen WANG
Chinese Medical Journal 2018;131(11):1375-1376
10.Clinical characteristics and GAA gene mutation in children with glycogen storage disease type II: an analysis of 3 cases.
Shan YUAN ; Jie JIANG ; Lu-Ting ZHA ; Zuo-Cheng YANG
Chinese Journal of Contemporary Pediatrics 2017;19(10):1092-1097
Glycogen storage disease type II (GSD II) is an autosomal recessive disorder caused by a deficiency of the lysosomal glycogen-hydrolyzing enzyme acid α-glucosidase (GAA) and can affect multiple systems including the heart and skeletal muscle. The aim of this study was to investigate three children with GSD II confirmed by GAA gene analysis and to report their clinical characteristics and gene mutations. One case was classified as infantile-onset GSD II, and two cases as late-onset GSD II. The infantile-onset patient (aged 4 months) showed no weight increase and had dyspnea, muscle hypotonia, and increased alanine aminotransferase and creatine kinase; echocardiography showed hypertrophic cardiomyopathy. The late-onset patients (aged 8 years and 13 years respectively) showed persistently elevated liver enzymes; one of them had recurrent respiratory tract infection and restrictive ventilation disorder, and the other case showed significantly increased creatase but normal electromyographic findings. Peripheral blood genetic testing for GAA gene showed six pathogenic mutations in the three cases, and the mutations c.2738C>T and c.568C>T had not been reported. Therefore, peripheral blood genetic testing for GAA gene is an effective diagnostic method.
Adolescent
;
Child
;
Child, Preschool
;
Female
;
Glycogen Storage Disease Type II
;
genetics
;
Humans
;
Male
;
Mutation
;
alpha-Glucosidases
;
genetics

Result Analysis
Print
Save
E-mail