1.Serum metabolomics study of Psoraleae Fructus in improving learning and memory ability of APP/PS1 mice.
Jia-Ming GU ; Hui XUE ; Ao XUE ; Jing JIANG ; Fang GENG ; Ji-Hui ZHAO ; Bo YANG ; Ning ZHANG
China Journal of Chinese Materia Medica 2023;48(15):4039-4045
This study aimed to investigate the mechanism of Psoraleae Fructus in improving the learning and memory ability of APP/PS1 mice by serum metabolomics, screen the differential metabolites of Psoraleae Fructus on APP/PS1 mice, and reveal its influence on the metabolic pathway of APP/PS1 mice. Thirty 3-month-old APP/PS1 mice were randomly divided into a model group and a Psoraleae Fructus extract group, and another 15 C57BL/6 mice of the same age were assigned to the blank group. The learning and memory ability of mice was evaluated by the Morris water maze and novel object recognition tests, and metabolomics was used to analyze the metabolites in mouse serum. The results of the Morris water maze test showed that Psoraleae Fructus shortened the escape latency of APP/PS1 mice(P<0.01), and increased the number of platform crossing and residence time in the target quadrant(P<0.01). The results of the novel object recognition test showed that Psoraleae Fructus could improve the novel object recognition index of APP/PS1 mice(P<0.01). Eighteen differential metabolites in serum were screened out by metabolomics, among which the levels of arachidonic acid, tryptophan, and glycerophospholipid decreased after drug administration, while the levels of glutamyltyrosine increased after drug administration. The metabolic pathways involved included arachidonic acid metabolism, glycerophospholipid metabolism, tryptophan metabolism, linoleic acid metabolism, α-linolenic acid metabolism, and glycerolipid metabolism. Therefore, Psoraleae Fructus can improve the learning and memory ability of APP/PS1 mice, and its mechanism may be related to the effects in promoting energy metabolism, reducing oxidative damage, protecting central nervous system, reducing neuroinflammation, and reducing Aβ deposition. This study is expected to provide references for Psoraleae Fructus in the treatment of Alzheimer's disease(AD) and further explain the mechanism of Psoraleae Fructus in the treatment of AD.
Mice
;
Animals
;
Amyloid beta-Protein Precursor/genetics*
;
Mice, Transgenic
;
Arachidonic Acid
;
Tryptophan
;
Mice, Inbred C57BL
;
Alzheimer Disease/genetics*
;
Maze Learning
;
Glycerophospholipids
;
Disease Models, Animal
;
Amyloid beta-Peptides/metabolism*
2.Mechanism of Zhongfeng Xingnao Decoction in improving microcirculatory disorders in cerebral hemorrhage based on network pharmacology and molecular docking techniques.
Xiao-Qin ZHONG ; Da-Feng HU ; Yu WANG ; Zhen-Qiu NING ; Min-Zhen DENG
China Journal of Chinese Materia Medica 2023;48(22):6115-6127
This study aimed to explore the mechanism of Zhongfeng Xingnao Decoction(ZFXN) in intervening microcirculatory di-sorders in cerebral hemorrhage by network pharmacology and molecular docking techniques. The information on the components of ZFXN was obtained through the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP) database, and the predicted targets of chemical components were obtained from PubChem and SwissTargetPrediction. The relevant targets of cerebral hemorrhage and microcirculatory disorders were collected from the GeneCards database, and the common targets of the components and diseases were analyzed by the Database for Annotation, Visualization, and Integrated Discovery(DAVID) for Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. Visualization of the correlation network was carried out using Cytoscape software to further screen important chemical components for molecular docking prediction with disease targets. The animal experiment validation was performed using modified neurological severity score(mNSS), enzyme-linked immunosorbent assay(ELISA), quantitative real-time polymerase chain reaction(qRT-PCR), immunofluorescence, and Western blot to detect the effects of ZFXN intervention in mice with cerebral hemorrhage. The results showed that there were 31 chemical components and 856 targets in the four drugs contained in ZFXN, 173 targets for microcirculatory disorders in cerebral hemorrhage, and 57 common targets for diseases and components. The enrichment analysis showed that common targets were mainly involved in biological processes, such as cell proliferation and apoptosis, and signaling pathways, such as tumor pathway, viral infection, phosphoinositide-3-kinase/protein kinase B(PI3K/AKT) signaling pathway, and mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking results revealed that the common components β-sitosterol of Rhei Radix et Rhizoma, Notoginseng Radix et Rhizoma, and Ginseng Radix et Rhizoma Rubra showed good docking with proto-oncogene tyrosine-protein kinase(SRC), signal transducer and activator of transcription 3(STAT3), phosphoinositide-3-kinase catalytic alpha polypeptide gene(PIK3CA), recombinant protein tyrosine phosphatase non receptor type 11(PTPN11), AKT1, epidermal growth factor receptor(EGFR), calcium adhesion-associated protein beta 1(CTNNB1), vascular endothelial growth factor A(VEGFA), and tumor protein p53(TP53). Moreover, sennoside E of Rhei Radix et Rhizoma showed good docking with MAPK1. The results revealed that the ZFXN relieved the neural injury in mice with cerebral hemorrhage, decreased the expression of S100 calcium-binding protein B(S100β), neuron specific enolase(NSE), matrix metalloproteinase 9(MMP9), tumor necrosis factor α(TNF-α), interleukin 1β(IL-1β), SRC, EGFR, CTNNB1, VEGFA, TP53, glial fibrillary acidic protein(GFAP), and leukocyte differentiation antigen 86(CD86), and increased the expression of p-PI3K, p-AKT, and zona occludens 1(ZO-1). The results indicate that ZFXN may inhibit neuronal apoptosis and inflammatory response through PI3K/AKT/p53 pathway to protect the blood-brain barrier, thereby slowing down microcirculatory impairment in cerebral hemorrhage.
Animals
;
Mice
;
Tumor Suppressor Protein p53
;
Proto-Oncogene Proteins c-akt
;
Molecular Docking Simulation
;
Network Pharmacology
;
Vascular Endothelial Growth Factor A
;
Microcirculation
;
Phosphatidylinositol 3-Kinases/genetics*
;
Tumor Necrosis Factor-alpha
;
ErbB Receptors
;
Cerebral Hemorrhage/drug therapy*
;
Neoplasms
;
Phosphatidylinositols
;
Drugs, Chinese Herbal/pharmacology*
3.Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice.
Lei PENG ; Hua-Guo CHEN ; Xin ZHOU
Journal of Integrative Medicine 2023;21(3):289-301
OBJECTIVE:
Recent investigations have demonstrated that Polygonum perfoliatum L. can protect against chemical liver injury, but the mechanism behind its efficacy is still unclear. Therefore, we studied the pharmacological mechanism at work in P. perfoliatum protection against chemical liver injury.
METHODS:
To evaluate the activity of P. perfoliatum against chemical liver injury, levels of alanine transaminase, lactic dehydrogenase, aspartate transaminase, superoxide dismutase, glutathione peroxidase and malondialdehyde were measured, alongside histological assessments of the liver, heart and kidney tissue. A nontargeted lipidomics strategy based on ultra-performance liquid chromatography quadrupole-orbitrap high-resolution mass spectrometry method was used to obtain the lipid profiles of mice with chemical liver injury and following treatment with P. perfoliatum; these profiles were used to understand the possible mechanisms behind P. perfoliatum's protective activity.
RESULTS:
Lipidomic studies indicated that P. perfoliatum protected against chemical liver injury, and the results were consistent between histological and physiological analyses. By comparing the profiles of liver lipids in model and control mice, we found that the levels of 89 lipids were significantly changed. In animals receiving P. perfoliatum treatment, the levels of 8 lipids were significantly improved, relative to the model animals. The results showed that P. perfoliatum extract could effectively reverse the chemical liver injury and significantly improve the abnormal liver lipid metabolism of mice with chemical liver injury, especially glycerophospholipid metabolism.
CONCLUSION
Regulation of enzyme activity related to the glycerophospholipid metabolism pathway may be involved in the mechanism of P. perfoliatum's protection against liver injury. Please cite this article as: Peng L, Chen HG, Zhou X. Lipidomic investigation of the protective effects of Polygonum perfoliatum against chemical liver injury in mice. J Integr Med. 2023; 21(3): 289-301.
Animals
;
Mice
;
Polygonum/chemistry*
;
Lipidomics
;
Liver
;
Lipids/pharmacology*
;
Glycerophospholipids/pharmacology*
;
Chemical and Drug Induced Liver Injury/metabolism*
4.Advances in basic research on choline and central nervous system development and related disorders.
Zheng Long XIA ; Xu Ying TAN ; Yan Yan SONG
Chinese Journal of Preventive Medicine 2023;57(5):793-800
Choline is an essential nutrient that plays an integral role in all stages of the life cycle, with increasing interest in the relationship between choline and neurodevelopment. Choline is a major component in the synthesis of phospholipids, phosphatidylcholine and sphingolipids, and is an essential nutrient for methyl metabolism, acetylcholine synthesis and cell signaling. Choline plays an important role in neurogenesis and neural migration during fetal development, potentially influencing the development and prognosis of neurological disorders, but its mechanism of action is not yet clear. This article reviews the source and metabolism of choline, the effects and mechanism of choline on neurodevelopment and central nervous system related disorders.
Humans
;
Choline/metabolism*
;
Phosphatidylcholines/metabolism*
;
Central Nervous System/metabolism*
5.Mechanism of active ingredients in Periploca forrestii compound against rheumatoid arthritis based on integrative metabolomics and network pharmacology.
Qin ZHANG ; Hong ZHANG ; Chun-Mei YANG ; Bo WANG ; Chen-Yang LI ; Qi LI
China Journal of Chinese Materia Medica 2023;48(2):507-516
In this study, an ultra-performance liquid chromatography-quadrupole time-of-flight high resolution mass spectrometer(UPLC-Q-TOF-HRMS) was used to investigate the effects of the active ingredients in Periploca forrestii compound on spleen metabolism in rats with collagen-induced arthritis(CIA), and its potential anti-inflammatory mechanism was analyzed by network pharmacology. After the model of CIA was successfully established, the spleen tissues of rats were taken 28 days after administration. UPLC-Q-TOF-HRMS chromatograms were collected and analyzed by principal component analysis(PCA), orthogonal partial least squares discriminant analysis(OPLS-DA), and MetPA. The results showed that as compared with the blank control group, 22 biomarkers in the spleen tissues such as inosine, citicoline, hypoxanthine, and taurine in the model group increased, while 9 biomarkers such as CDP-ethanolamine and phosphorylcholine decreased. As compared with the model group, 21 biomarkers such as inosine, citicoline, CDP-ethanolamine, and phosphorylcholine were reregulated by the active ingredients in P. forrestii. Seventeen metabolic pathways were significantly enriched, including purine metabolism, taurine and hypotaurine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism. Network pharmacology analysis found that purine metabolism, glycerophospholipid metabolism, and cysteine and methionine metabolism played important roles in the pathological process of rheumatoid arthritis. This study suggests that active ingredients in P. forrestii compound can delay the occurrence and development of inflammatory reaction by improving the spleen metabolic disorder of rats with CIA. The P. forrestii compound has multi-target and multi-pathway anti-inflammatory mechanism. This study is expected to provide a new explanation for the mechanism of active ingredients in P. forrestii compound against rheumatoid arthritis.
Rats
;
Animals
;
Periploca
;
Cysteine
;
Cytidine Diphosphate Choline
;
Network Pharmacology
;
Phosphorylcholine
;
Metabolomics
;
Arthritis, Rheumatoid/drug therapy*
;
Biomarkers
;
Glycerophospholipids
;
Methionine
;
Purines
;
Chromatography, High Pressure Liquid
6.Mechanism of Gardeniae Fructus in ameliorating rheumatoid arthritis based on metabolomics and intestinal microbiota.
Ying TONG ; Yang-Ding XU ; Jiang HE ; Pu-Yang GONG ; Yi HONG ; Yu-Jie GUO
China Journal of Chinese Materia Medica 2023;48(13):3602-3611
Rheumatoid arthritis(RA), a chronic autoimmune disease, is featured by persistent joint inflammation. The development of RA is associated with the disturbance of endogenous metabolites and intestinal microbiota. Gardeniae Fructus(GF), one of the commonly used medicinal food in China, is usually prescribed for the prevention and treatment of jaundice, inflammation, ache, fever, and skin ulcers. GF exerts an effect on ameliorating RA, the mechanism of which remains to be studied. In this study, ultra-perfor-mance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS)-based serum non-target metabolomics and 16S rDNA high-throughput sequencing were employed to elucidate the mechanism of GF in ameliorating RA induced by complete Freund's adjuvant in rats. The results showed that GF alleviated the pathological conditions in adjuvant arthritis(AA) rats. The low-and high-dose GF lo-wered the serum levels of interleukin(IL)-6, tumor necrosis factor-α(TNF-α), IL-1β, and prostaglandin E2 in the rats(P<0.05, P<0.01). Pathways involved in metabolomics were mainly α-linolenic acid metabolism and glycerophospholipid metabolism. The results of 16S rDNA sequencing showed that the Streptococcus, Facklamia, Klebsiella, Enterococcus, and Kosakonia were the critical gut microorganisms for GF to treat AA in rats. Spearman correlation analysis showed that the three differential metabolites PE-NMe[18:1(9Z)/20:0], PC[20:1(11Z)/18:3(6Z,9Z,12Z)], and PC[20:0/18:4(6Z,9Z,12Z,15Z)] were correlated with the differential bacteria. In conclusion, GF may ameliorate RA by regulating the composition of intestinal microbiota, α-linolenic acid metabolism, and glycerophospholipid metabolism. The findings provide new ideas and data for elucidating the mechanism of GF in relieving RA.
Rats
;
Animals
;
Chromatography, Liquid
;
Gardenia
;
Tandem Mass Spectrometry
;
Gastrointestinal Microbiome
;
alpha-Linolenic Acid
;
Metabolomics/methods*
;
Arthritis, Rheumatoid/drug therapy*
;
Inflammation
;
Glycerophospholipids
7.Detection of Phosphatidylethanol in Whole Blood by UPLC-MS/MS.
Shuang-Ying HU ; Xian-Guo FU ; Ming ZHANG ; Lian-Jun CAO ; Reheman AIKEBAIER
Journal of Forensic Medicine 2022;38(3):367-373
OBJECTIVES:
To establish the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to detect ethanol metabolites phosphatidylethanol (PEth) in whole blood.
METHODS:
An appropriate amount of aqueous solution including 1% formic acid was added to 100 μL whole blood, the protein was precipitated with acetone, centrifuged and the supernatant was purified and enriched by using Bond Elut Certify column. The eluent was redissolved with 1/1 isopropanol/acetonitrile (v/v) solution after nitrogen blowing and then tested by UPLC-MS/MS. Selective reaction monitoring scanning was carried out in negative ionization mode, and quantitative analysis was performed by external standard method.
RESULTS:
PEth showed a linear relationship over the concentration range of 1-160 ng/mL in whole blood (r=0.999 9) with peak area. The detection limit was 0.2 ng/mL, the quantification limit was 1 ng/mL, the recovery rate was 97.43%-103.61%, the accuracy was 0.99%-1.77%, the intra-day precision was 0.4%-2.4%, and the inter-day precision was 1.1%-3.3%, and the matrix effect was 91.00%-99.55%. PEth was not detected in the in vitro blood samples supplemented with ethanol. PEth was detected positive in three drunk driving cases, and the concentration were 195.49, 83.67 and 876.12 ng/mL, respectively.
CONCLUSIONS
The established method has high sensitivity and specificity and the analysis results are accurate. It is suitable for the qualitative and quantitative analysis of PEth in whole blood.
2-Propanol
;
Acetone
;
Acetonitriles
;
Biomarkers
;
Chromatography, High Pressure Liquid/methods*
;
Chromatography, Liquid
;
Ethanol
;
Glycerophospholipids
;
Nitrogen
;
Tandem Mass Spectrometry/methods*
8.Effect of Electro-acupuncture on Vasomotor Symptoms in Rats with Acute Cerebral Infarction Based on Phosphatidylinositol System.
Jing LI ; Ying HE ; Yuan-Hao DU ; Min ZHANG ; Rainer GEORGI ; Bernhard KOLBERG ; Dong-Wei SUN ; Kun MA ; Yong-Feng LI ; Xue-Zhu ZHANG
Chinese journal of integrative medicine 2022;28(2):145-152
OBJECTIVE:
To investigate the effect of electro-acupuncture (EA) on vasomotor symptoms in rats with acute cerebral infarction, by observing the changes in the expression of factors related to the phosphatidylinositol (PI) system.
METHODS:
Forty-two Wistar rats were randomly divided into 3 groups by a random number table: the control group (n=6), the model group (n=18) and the EA group (n=18). The EA group was given EA treatment at Shuigou (GV 26) instantly after modeling with middle cerebral artery occlusion (MCAO) method, while the model and control groups were not given any treatment. The degrees of neurological deficiency were evaluated using neurological severity scores (NSS) and the brain blood flow was evaluated by a laser scanning confocal microscope. Western blot analysis was conducted to detect the expression levels of G-protein subtype (Gq) and calmodulin (CaM). Competition for protein binding was conducted to detect the expression level of inositol triphosphate (IP3). Thin layer quantitative analysis was conducted to detect the expression level of diacylglycerol (DAG). The expression level of intracellular concentration of free calcium ion ([Ca
RESULTS:
The NSS of the model group was significantly higher than the control group at 3 and 6 h after MCAO (P<0.01), while the EA group was significantly lower than the model group at 6 h (P<0.01). The cerebral blood flow in the model group was significantly lower than the control group at 1, 3 and 6 h after MCAO (P<0.01), while for the EA group it was remarkably higher than the model group at the same time points (P<0.01). The expressions of Gq, CaM, IP3, DAG and [Ca
CONCLUSION
EA treatment at GV 26 can effectively decrease the over-expression of related factors of PI system in rats with acute cerebral infarction, improve cerebral autonomy movement, and alleviate cerebral vascular spasm.
Acupuncture Therapy
;
Animals
;
Brain Ischemia
;
Cerebral Infarction/therapy*
;
Electroacupuncture
;
Phosphatidylinositols
;
Rats
;
Rats, Wistar
9.Lizhong Decoction Ameliorates Ulcerative Colitis in Mice via Regulation of Plasma and Urine Metabolic Profiling.
Ling WANG ; Jin-Hua TAO ; Yi-Fan CHEN ; Yu-Meng SHEN ; Shu JIANG
Chinese journal of integrative medicine 2022;28(11):1015-1022
OBJECTIVE:
To elucidate the mechanism of Lizhong Decoction (LZD) in treating dextran sodium sulfate (DSS)-induced colitis in mice based on metabonomics.
METHODS:
Thirty-six mice were randomly divided into 6 groups, including normal, model, low- (1.365 g/kg), medium- (4.095 g/kg) and high dose (12.285 g/kg) LZD and salazosulfadimidine (SASP) groups, 6 mice in each group. Colitis model mice were induced by DSS admistration for 7 days, and treated with low, medium and high dose LZD extract and positive drug SASP. Metabolic comparison of DSS-induced colitis and normal mice was investigated by using ultra-performance liquid chromatography coupled to quadrupole time-of-flight mass (UPLC-Q-TOF/MS) combined with Metabolynx™ software.
RESULTS:
The metabolic profiles of plasma and urine in colitis mice were distinctly ameliorated after LZD treatment (P<0.05). Potential biomarkers (9 in serum and 4 in urine) were screened and tentatively identified. The endogenous metabolites were mainly involved in primary bile acid, sphingolipid, linoleic acid, arachidonic acid, amino acids (alanine, aspartate, and glutamate), butanoate and glycerophospholipid metabolism in plasma, and terpenoid backbone biosynthesis, glycerophospholipid and tryptophan metabolism in urine. After LZD treatment, these markers notably restored to normal levels.
CONCLUSIONS
The study revealed the underlying mechanism of LZD on amelioration of ulcerative colitis based on metabonomics, which laid a foundation for further exploring the pathological and physiological mechanism, early diagnosis, and corresponding drug development of colitis.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Tryptophan/adverse effects*
;
Aspartic Acid
;
Dextrans/adverse effects*
;
Drugs, Chinese Herbal/adverse effects*
;
Colitis/drug therapy*
;
Biomarkers/metabolism*
;
Amino Acids/adverse effects*
;
Glycerophospholipids/therapeutic use*
;
Sphingolipids/adverse effects*
;
Bile Acids and Salts/adverse effects*
;
Glutamates/adverse effects*
;
Alanine/adverse effects*
;
Arachidonic Acids/adverse effects*
;
Linoleic Acids/adverse effects*
;
Terpenes
10.Efficacy and Safety of Guihuang Formula in Treating Type III Prostatitis Patients with Dampness-Heat and Blood Stasis Syndrome: A Randomized Controlled Trial.
Sheng-Jing LIU ; Ying-Jun DENG ; Yin ZENG ; Ming ZHAO ; Jun GUO ; Qing-He GAO
Chinese journal of integrative medicine 2022;28(10):879-884
OBJECTIVE:
To observe the efficacy and safety of Guihuang Formula (GHF) in treating patients with type III prostatitis and Chinese medicine syndrome of dampness-heat and blood stasis.
METHODS:
Sixty-six patients diagnosed with type III prostatitis with dampness-heat and blood stasis syndrome were randomly divided into the treatment group (GHF) and the control group (tamsulosin) using a random number table, with 33 cases each group. The treatment group received GHF twice a day, and the control group received tamsulosin 0.2 mg once daily before bedtime. Patients in both groups received treatment for 6 weeks and was followed up for 2 weeks. The outcomes included the National Institute of Health Chronic Prostatitis Symptom Index (NIH-CPSI) score, Chinese Medicine Symptoms Score (CMSS), expressed prostatic secretions (EPS) and adverse events (AEs).
RESULTS:
After treatment, the NIH-CPSI total score and domain scores of pain discomfort, urination and quality of life decreased significantly from the baseline in both groups (P<0.05). The CMSS score decreased in both groups (P<0.05). The WBC count decreased and lecithin body count increased in both groups (P<0.05). GHF showed a more obvious advantage in reducing the pain discomfort and quality of life domain scores of NIH-CPSI, reducing the CMSS score, increasing the improvement rate of the WBC and lecithin body counts, compared with the control group (P<0.05). There were no significant differences in decreasing urination domain score of NIH-CPSI between two groups (P>0.05). In addition, no serious AEs were observed.
CONCLUSION
GHF is effective in treating type III prostatitis patients with dampness-heat and blood stasis syndrome without serious AEs. (Registration No. ChiCTR1900026966).
Chronic Disease
;
Hot Temperature
;
Humans
;
Lecithins
;
Male
;
Pain
;
Prostatitis/drug therapy*
;
Quality of Life
;
Tamsulosin

Result Analysis
Print
Save
E-mail