1.Simultaneous Detection of Clostridioides difficile Glutamate Dehydrogenase and Toxin A/B: Comparison of the C. DIFF QUIK CHEK COMPLETE and RIDASCREEN Assays
In Young YOO ; Dong Joon SONG ; Hee Jae HUH ; Nam Yong LEE
Annals of Laboratory Medicine 2019;39(2):214-217
Various commercial assays have recently been developed for detecting glutamate dehydrogenase (GDH) and/or toxin A/B to diagnose Clostridioides difficile infection (CDI). We compared the performance of two assays for the simultaneous detection of C. difficile GDH and toxin A/B, using 150 stool samples: C. DIFF QUIK CHEK COMPLETE (QCC; TechLab, Blacksburg, VA, USA) and RIDASCREEN Clostridium difficile GDH (RC-GDH) and Toxin A/B (RC-Toxin A/B; R-Biopharm, Darmstadt, Germany). For GDH detection, QCC and RC-GDH showed satisfactory sensitivity (95.7% and 94.3%, respectively) and specificity (92.5% and 93.8%, respectively) compared with C. difficile culture. For toxin A/B detection, QCC showed higher sensitivity than RC-Toxin A/B (60.0% vs 33.3%, P < 0.001) compared with toxigenic C. difficile culture. When the results of QCC or RC-GDH+RC-Toxin A/B were used as the first step of a two-step algorithm for diagnosing CDI, QCC permitted more accurate discrimination than RC of positive or negative results for CDI (77.3% and 65.3%, respectively). QCC is useful for the simultaneous detection of C. difficile GDH and toxin A/B as a part of the two-step algorithm for diagnosing CDI.
Clostridium difficile
;
Discrimination (Psychology)
;
Glutamate Dehydrogenase
;
Glutamic Acid
;
Sensitivity and Specificity
2.Laboratory Diagnosis of Clostridium difficile Infection in Korea: The First National Survey
Hae Sun CHUNG ; Jeong Su PARK ; Bo Moon SHIN
Annals of Laboratory Medicine 2019;39(3):317-321
In May 2015, we conducted a voluntary online survey on laboratory diagnostic assays for Clostridium difficile infection (CDI) across clinical microbiology laboratories in Korea. Responses were obtained from 66 laboratories, including 61 hospitals and five commercial laboratories. Among them, nine laboratories reported having not conducted CDI assays. The toxin AB enzyme immunoassay (toxin AB EIA), nucleic acid amplification test (NAAT), and C. difficile culture, alone or in combination with other assays, were used in 51 (89.5%), 37 (64.9%), and 37 (64.9%) of the remaining 57 laboratories, respectively, and 23 (40.4%) of the laboratories performed all three assays. Only one laboratory used the glutamate dehydrogenase assay. Nine laboratories used the toxin AB EIA as a stand-alone assay. The median (range) of examined specimens in one month for the toxin AB EIA, NAAT, and C. difficile culture was 160 (50–2,060), 70 (7–720), and 130 (9–750), respectively. These findings serve as valuable basic data regarding the current status of laboratory diagnosis of CDI in Korea, offering guidance for improved implementation.
Clinical Laboratory Techniques
;
Clostridium difficile
;
Clostridium
;
Glutamate Dehydrogenase
;
Immunoenzyme Techniques
;
Korea
;
Nucleic Acid Amplification Techniques
3.Correlation of glutamate dehydrogenase with several tumors.
Hai HOU ; Chao LUO ; Zhonghao CHEN ; Xudong DENG ; Yao SUN ; Xiangxi WANG
Chinese Journal of Biotechnology 2019;35(3):389-395
Most organisms contain glutamate dehydrogenase (E.C. 1.4.1.2-1.4.1.4). In eukaryotes, the enzyme is mainly present in mitochondria. This enzyme plays a vital role in the metabolism of nitrogen and carbon and the signaling pathway. Studies have found that glutamate dehydrogenase has a certain relationship with the occurrence and development of tumors, which is significant for tumor research, but reviews on its relationship with human tumors are rare. This review summarized the relationship between glutamate dehydrogenase and breast cancer, glioma, colorectal cancer and ovarian cancer, etc, thus providing assistance for related research.
Carbon
;
Glioma
;
Glutamate Dehydrogenase
;
Humans
;
Mitochondria
;
Nitrogen
4.Development of Molecular Diagnosis Using Multiplex Real-Time PCR and T4 Phage Internal Control to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis from Human Stool Samples
Ji Hun SHIN ; Sang Eun LEE ; Tong Soo KIM ; Da Won MA ; Shin Hyeong CHO ; Jong Yil CHAI ; Eun Hee SHIN
The Korean Journal of Parasitology 2018;56(5):419-427
This study aimed to develop a new multiplex real-time PCR detection method for 3 species of waterborne protozoan parasites (Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis) identified as major causes of traveler's diarrhea. Three target genes were specifically and simultaneously detected by the TaqMan probe method for multiple parasitic infection cases, including Cryptosporidium oocyst wall protein for C. parvum, glutamate dehydrogenase for G. lamblia, and internal transcribed spacer 1 for C. cayetanensis. Gene product 21 for bacteriophage T4 was used as an internal control DNA target for monitoring human stool DNA amplification. TaqMan probes were prepared using 4 fluorescent dyes, FAM™, HEX™, Cy5™, and CAL Fluor Red® 610 on C. parvum, G. lamblia, C. cayetanensis, and bacteriophage T4, respectively. We developed a novel primer-probe set for each parasite, a primer-probe cocktail (a mixture of primers and probes for the parasites and the internal control) for multiplex real-time PCR analysis, and a protocol for this detection method. Multiplex real-time PCR with the primer-probe cocktail successfully and specifically detected the target genes of C. parvum, G. lamblia, and C. cayetanensis in the mixed spiked human stool sample. The limit of detection for our assay was 2×10 copies for C. parvum and for C. cayetanensis, while it was 2×10³ copies for G. lamblia. We propose that the multiplex real-time PCR detection method developed here is a useful method for simultaneously diagnosing the most common causative protozoa in traveler's diarrhea.
Bacteriophage T4
;
Cryptosporidium parvum
;
Cryptosporidium
;
Cyclospora
;
Diagnosis
;
Diarrhea
;
DNA
;
Fluorescent Dyes
;
Giardia lamblia
;
Giardia
;
Glutamate Dehydrogenase
;
Humans
;
Limit of Detection
;
Methods
;
Multiplex Polymerase Chain Reaction
;
Oocysts
;
Parasites
;
Real-Time Polymerase Chain Reaction
5.Multiplex-Touchdown PCR to Simultaneously Detect Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the Major Causes of Traveler's Diarrhea.
Ji Hun SHIN ; Sang Eun LEE ; Tong Soo KIM ; Da Won MA ; Jong Yil CHAI ; Eun Hee SHIN
The Korean Journal of Parasitology 2016;54(5):631-636
This study aimed to develop a multiplex-touchdown PCR method to simultaneously detect 3 species of protozoan parasites, i.e., Cryptosporidium parvum, Giardia lamblia, and Cyclospora cayetanensis, the major causes of traveler’s diarrhea and are resistant to standard antimicrobial treatments. The target genes included the Cryptosporidium oocyst wall protein for C. parvum, Glutamate dehydrogenase for G. lamblia, and 18S ribosomal RNA (18S rRNA) for C. cayetanensis. The sizes of the amplified fragments were 555, 188, and 400 bps, respectively. The multiplex-touchdown PCR protocol using a primer mixture simultaneously detected protozoa in human stools, and the amplified gene was detected in >1×10³ oocysts for C. parvum, >1×10⁴ cysts for G. lamblia, and >1 copy of the 18S rRNA gene for C. cayetanensis. Taken together, our protocol convincingly demonstrated the ability to simultaneously detect C. parvum, G. lamblia, and C. cayetanenesis in stool samples.
Cryptosporidium parvum*
;
Cryptosporidium*
;
Cyclospora*
;
Diarrhea*
;
Genes, rRNA
;
Giardia lamblia*
;
Giardia*
;
Glutamate Dehydrogenase
;
Humans
;
Methods
;
Multiplex Polymerase Chain Reaction
;
Oocysts
;
Parasites
;
Polymerase Chain Reaction*
;
RNA, Ribosomal, 18S
6.Evaluation of a Rapid Membrane Enzyme Immunoassay for the Simultaneous Detection of Glutamate Dehydrogenase and Toxin for the Diagnosis of Clostridium difficile Infection.
Heejung KIM ; Wan Hee KIM ; Myungsook KIM ; Seok Hoon JEONG ; Kyungwon LEE
Annals of Laboratory Medicine 2014;34(3):235-239
We evaluated the new C. DIFF QUIK CHEK COMPLETE (CD COMPLETE; TechLab, USA), which is a rapid membrane enzyme immunoassay that uses a combination of glutamate dehydrogenase (GDH) antigen and toxin A and B detection. A total of 608 consecutive loose stool specimens collected from the patients with suspected Clostridium difficile infection (CDI) from August to December 2012 were subjected to the CD COMPLETE and VIDAS Clostridium difficile A & B (VIDAS CDAB; bioMerieux, France). Their performances were compared with a toxigenic culture as a reference. Stool specimens that were culture-negative and CD COMPLETE- or VIDAS CDAB-positive were analyzed by using an enrichment procedure. In comparison to the toxigenic cultures, sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV) were 63.6%, 98.0%, 76.1%, and 96.4%, respectively, for the CD COMPLETE-toxin and 75.5%, 97.4%, 72.5%, and 97.8%, respectively, for the VIDAS CDAB. In comparison to the enriched C. difficile cultures, the sensitivity, specificity, PPV, and NPV for the CD COMPLETE-GDH were 91.0%, 92.4%, 70.5%, and 98.1%, respectively. The CD COMPLETE is a reliable method for the diagnosis of CDI and provides greater sensitivity than toxin enzyme immunoassay alone. Furthermore, the CD COMPLETE-GDH has advantages over direct culture in detecting C. difficile.
Bacterial Proteins/*analysis
;
Bacterial Toxins/*analysis
;
Clostridium Infections/*diagnosis/microbiology
;
Clostridium difficile/enzymology/*isolation & purification/metabolism
;
Enterotoxins/*analysis
;
Feces/microbiology
;
Glutamate Dehydrogenase/*analysis
;
Humans
;
*Immunoenzyme Techniques
;
Reagent Kits, Diagnostic
;
Sensitivity and Specificity
7.Genotyping of Giardia duodenalis Isolates from Dogs in Guangdong, China Based on Multi-Locus Sequence.
Guochao ZHENG ; Muhamd ALSARAKIBI ; Yuanjia LIU ; Wei HU ; Qin LUO ; Liping TAN ; Guoqing LI
The Korean Journal of Parasitology 2014;52(3):299-304
This study aimed to identify the assemblages (or subassemblages) of Giardia duodenalis by using normal or nested PCR based on 4 genetic loci: glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi), beta-giardin (bg), and small subunit ribosomal DNA (18S rRNA) genes. For this work, a total of 216 dogs' fecal samples were collected in Guangdong, China. The phylogenetic trees were constructed with MEGA5.2 by using the neighbor-joining method. Results showed that 9.7% (21/216) samples were found to be positive; moreover, 10 samples were single infection (7 isolates assemblage A, 2 isolates assemblage C, and 1 isolate assemblage D) and 11 samples were mixed infections where assemblage A was predominant, which was potentially zoonotic. These findings showed that most of the dogs in Guangdong were infected or mixed-infected with assemblage A, and multi-locus sequence typing could be the best selection for the genotype analysis of dog-derived Giardia isolates.
Animals
;
China
;
Cluster Analysis
;
Coinfection/parasitology/veterinary
;
Cytoskeletal Proteins/genetics
;
DNA, Protozoan/chemistry/genetics
;
Dog Diseases/parasitology
;
Dogs
;
Genotype
;
Giardia lamblia/*classification/*genetics/isolation & purification
;
Giardiasis/parasitology/*veterinary
;
Glutamate Dehydrogenase/genetics
;
Molecular Sequence Data
;
*Multilocus Sequence Typing
;
Phylogeny
;
Polymerase Chain Reaction
;
RNA, Ribosomal, 18S/genetics
;
Triose-Phosphate Isomerase/genetics
8.Tanshinone IIA protects against triptolide-induced liver injury via Nrf2/ARE activation.
Cui-wen GUAN ; Jing JIN ; Jia LI ; Zhong-xiang ZHAO ; Zhi-ying HUANG
Acta Pharmaceutica Sinica 2013;48(9):1397-1402
The aim of this study is to investigate the protection effect of tanshinone IIA (Tan) against triptolide (TP)-induced liver injury and the mechanisms involved. Acute liver injury was induced by intraperitoneal injection of TP (1 mg x kg(-1)) in mice. The activities of AST, ALT and LDH in serum and the levels of GSH, GST, GSH-PX, SOD, CAT and MDA in liver tissue were detected. The histopathological changes of liver tissues were observed after HE staining. Nrf2 translocation in liver tissue was detected by Western blotting, and real-time PCR was used to measure the expression levels of GCLC, NQO1 and HO-1 mRNA. The results showed that pretreatment with Tan significantly prevented the TP induced liver injury as indicated by reducing the activities of AST, ALT and LDH (P < 0.01). Tan pretreatment also prevented TP-induced oxidative stress in the mice liver by inhibiting MDA and restoring the levels of GSH, GST, SOD and CAT (P < 0.05). Parallel to these changes, pretreatment with Tan could attenuate histopathologic changes induced by TP. Furthermore, the results indicated that Tan pretreatment caused nuclear accumulation of Nrf2 as well as induction of mRNA expression of antioxidant response element (ARE)-driven genes such as GCLC, NQO1 and HO-1. These results indicated that Tan could protect against TP-induced acute liver injury via the activation of Nrf2/ARE pathway.
Animals
;
Antioxidant Response Elements
;
drug effects
;
Chemical and Drug Induced Liver Injury
;
metabolism
;
pathology
;
Diterpenes
;
toxicity
;
Diterpenes, Abietane
;
pharmacology
;
Drugs, Chinese Herbal
;
pharmacology
;
Epoxy Compounds
;
toxicity
;
Glutamate-Cysteine Ligase
;
genetics
;
metabolism
;
Heme Oxygenase-1
;
genetics
;
metabolism
;
Liver
;
metabolism
;
pathology
;
Male
;
Membrane Proteins
;
genetics
;
metabolism
;
Mice
;
Mice, Inbred C57BL
;
NAD(P)H Dehydrogenase (Quinone)
;
genetics
;
metabolism
;
NF-E2-Related Factor 2
;
metabolism
;
Phenanthrenes
;
toxicity
;
RNA, Messenger
;
metabolism
;
Signal Transduction
;
drug effects
9.Schisandrin B protects against nephrotoxicity induced by cisplatin in HK-2 cells via Nrf2-ARE activation.
Mei LI ; Jing JIN ; Jia LI ; Cui-Wen GUAN ; Wen-Wen WANG ; Yu-Wen QIU ; Zhi-Ying HUANG
Acta Pharmaceutica Sinica 2012;47(11):1434-1439
This study is to investigate the protection effect of schisandrin B (Sch B) against oxidation stress of HK-2 cells induced by cisplatin and the mechanisms involved. HK-2 cells were cultured and divided into different groups: solvent control group, cisplatin exposure group, positive group, Sch B treatment group. Cell viability and toxicity were evaluated by MTT and LDH assay. GSH level and SOD enzymes activities were also measured. DCFH-DA as fluorescence probe was used to detect ROS level by fluorescence microplate reader. Nrf2 translocation was detected by Western blotting. Real time Q-PCR was used to detect expressions of NQO1, HO-1 and GCLC mRNA level. The results showed that Sch B could significantly inhibit the decline of cell viability induced by cisplatin treatment (P < 0.05) and the protective effect was in a dose dependent manner. Furthermore, Sch B treatment significantly inhibited the increase of ROS level induced by cisplatin and reversed the decrease of GSH level (P < 0.05). When Sch B concentration was up to 5 micromol x L(-1), SOD enzyme activities were also enhanced significantly compared with that of the cisplatin group (P < 0.05). It was shown that Sch B could cause nuclear accumulation of Nrf2 in association with downstream activation of Nrf2 mediated oxidative response genes such as GCLC, NQO1 and HO-1. These results suggested Sch B could protect against the oxidative damage of HK-2 cells induced by cisplatin via the activation of Nrf2/ARE signal pathway.
Antineoplastic Agents
;
toxicity
;
Antioxidants
;
isolation & purification
;
pharmacology
;
Cell Line
;
Cell Survival
;
drug effects
;
Cisplatin
;
toxicity
;
Cyclooctanes
;
isolation & purification
;
pharmacology
;
Glutamate-Cysteine Ligase
;
genetics
;
metabolism
;
Glutathione
;
metabolism
;
Heme Oxygenase-1
;
genetics
;
metabolism
;
Humans
;
Kidney Tubules, Proximal
;
cytology
;
metabolism
;
L-Lactate Dehydrogenase
;
metabolism
;
Lignans
;
isolation & purification
;
pharmacology
;
NAD(P)H Dehydrogenase (Quinone)
;
genetics
;
metabolism
;
NF-E2-Related Factor 2
;
genetics
;
metabolism
;
Polycyclic Compounds
;
isolation & purification
;
pharmacology
;
RNA, Messenger
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
Schisandra
;
chemistry
;
Signal Transduction
;
Superoxide Dismutase
;
metabolism
10.Mutation analysis of the GLUD1 gene in patients with glutamate dehydrogenase congenital hyperinsulinism.
Yan-mei SANG ; Gui-chen NI ; Gui-qin LIU ; Min LIU ; Yi GU
Chinese Journal of Medical Genetics 2010;27(5):493-496
OBJECTIVETo investigate the glutamate dehydrogenase 1 (GLUD1) gene mutation of three patients diagnosed as glutamate dehydrogenase congenital hyperinsulinism (GDH-HI).
METHODSThree patients diagnosed as GDH-HI and their parents were involved in the study. PCR-DNA direct sequencing was used to analyze the exons 6,7,10,11 and 12 of the GLUD1 gene.
RESULTSIn the first case, an R269H heterozygous mutation was found in the GLUD1 gene, with autosomal dominant inheritance. In the second case, there was a de novo S445L heterozygous mutation of the GLUD1 gene. No mutation was detected in the third case.
CONCLUSIONIn Chinese, R269H, S445L heterozygous mutation of the GLUD1 gene can lead to GDH-HI. Genetic analysis is necessary in making genetic diagnosis of congenital hyperinsulinsm.
Adult ; Asian Continental Ancestry Group ; genetics ; Base Sequence ; China ; Congenital Hyperinsulinism ; enzymology ; genetics ; DNA Mutational Analysis ; Exons ; Female ; Glutamate Dehydrogenase (NADP+) ; genetics ; Humans ; Infant ; Male ; Molecular Sequence Data ; Mutation, Missense

Result Analysis
Print
Save
E-mail