1.Analysis of the salt-stress responsive element of the promoter of peanut small GTP binding protein gene AhRabG3f.
Guoning DU ; Jie XIANG ; Shunyu LIN ; Xiangyuan KONG ; Xiuling WU ; Xuedong GUAN ; Hong ZHU ; Jingshan WANG ; Lixian QIAO ; Jiongming SUI ; Chunmei ZHAO
Chinese Journal of Biotechnology 2022;38(8):2989-2998
To study the molecular mechanism of salt stress response of peanut small GTP binding protein gene AhRabG3f, a 1 914 bp promoter fragment upstream of the start codon of AhRabG3f gene (3f-P) from peanut was cloned. Subsequently, five truncated fragments (3f-P1-3f-P5) with lengths of 1 729, 1 379, 666, 510 and 179 bp were obtained through deletion at the 5' end, respectively. Plant expression vectors where these six promoter fragments were fused with the gus gene were constructed and transformed into tobacco by Agrobacterium-mediated method, respectively. GUS expression in transgenic tobacco and activity analysis were conducted. The gus gene expression can be detected in the transgenic tobacco harboring each promoter segment, among which the driving activity of the full-length promoter 3f-P was the weakest, while the driving activity of the promoter segment 3f-P3 was the strongest. Upon exposure of the transgenic tobacco to salt stress, the GUS activity driven by 3f-P, 3f-P1, 3f-P2 and 3f-P3 was 3.3, 1.2, 1.9 and 1.2 times compared to that of the transgenic plants without salt treatment. This suggests that the AhRabG3f promoter was salt-inducible and there might be positive regulatory elements between 3f-P and 3f-P3 in response to salt stress. The results of GUS activity driven by promoter fragments after salt treatment showed that elements included MYB and GT1 between 1 930 bp and 1 745 bp. Moreover, a TC-rich repeat between 682 bp and 526 bp might be positive cis-elements responsible for salt stress, and an MYC element between 1 395 bp and 682 bp might be a negative cis-element responsible for salt stress. This study may facilitate using the induced promoter to regulate the salt resistance of peanut.
Arachis/genetics*
;
Fabaceae/genetics*
;
GTP-Binding Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Glucuronidase/metabolism*
;
Plant Proteins/metabolism*
;
Plants, Genetically Modified/genetics*
;
Salt Stress
;
Stress, Physiological/genetics*
;
Tobacco/genetics*
2.Development and optimization of an intergeneric conjugation system and analysis of promoter activity in Streptomyces rimosus M527.
Zhang-Qing SONG ; Zhi-Jun LIAO ; Ye-Feng HU ; Zheng MA ; Andreas BECHTHOLD ; Xiao-Ping YU
Journal of Zhejiang University. Science. B 2019;20(11):891-900
An efficient genetic transformation system and suitable promoters are essential prerequisites for gene expression studies and genetic engineering in streptomycetes. In this study, firstly, a genetic transformation system based on intergeneric conjugation was developed in Streptomyces rimosus M527, a bacterial strain which exhibits strong antagonistic activity against a broad range of plant-pathogenic fungi. Some experimental parameters involved in this procedure were optimized, including the conjugative media, ratio of donor to recipient, heat shock temperature, and incubation time of mixed culture. Under the optimal conditions, a maximal conjugation frequency of 3.05×10-5 per recipient was obtained. Subsequently, based on the above developed and optimized transformation system, the synthetic promoters SPL-21 and SPL-57, a native promoter potrB, and a constitutive promoter permE* commonly used for gene expression in streptomycetes were selected and their activity was analyzed using gusA as a reporter gene in S. rimosus M527. Among the four tested promoters, SPL-21 exhibited the strongest expression activity and gave rise to a 2.2-fold increase in β-glucuronidase (GUS) activity compared with the control promoter permE*. Promoter SPL-57 showed activity comparable to that of permE*. Promoter potrB, which showed the lowest activity, showed a 50% decrease in GUS activity compared with the control permE*. The transformation system developed in this study and the tested promotors provide a basis for the further modification of S. rimosus M527.
Conjugation, Genetic
;
Glucuronidase/genetics*
;
Promoter Regions, Genetic
;
Streptomyces rimosus/genetics*
3.Agrobacterium-mediated transformation of Cymbidium sinensis.
Li XIE ; Fen WANG ; Ruizhen ZENG ; Herong GUO ; Yuliang ZHOU ; Zhisheng ZHANG
Chinese Journal of Biotechnology 2015;31(4):542-551
Genetic transformation is an effective method to improve breeding objective traits of orchids. However, there is little information about genetic transformation of Cymbidium sinensis. Rhizomes from shoot-tip culture of C. sinensis cv. 'Qijianbaimo' were used to establish a practical transformation protocol of C. sinensis. Pre-culture time, concentration and treating methods of acetosyringone, concentration of infection bacteria fluid (OD600), infection time, and co-culture time had significant effects on β-glucuronidase (GUS) transient expression rate of C. sinensis cv. 'Qijianbaimo' rhizome. The GUS transient expression rate of rhizome was the highest (11.67%) when rhizomes pre-cultured for 39 d were soaked in bacterium suspension (OD600 = 0.9) supplemented with 200 μmol/L acetosyringone for 35 min, followed by culturing on co-culture medium supplemented with 200 μmol/L acetosyringone for 7 d. Under this transformation conditions, 3 transgenic plantlets, confirmed by GUS histochemical assay and PCR, were obtained from 400 regenerated plantlets, and the genetic transformation rate was 0.75%. This proved that it was feasible to create new cultivars by the use of Agrobacterium-mediated genetic transformation in C. sinense.
Agrobacterium
;
Coculture Techniques
;
Genetic Engineering
;
Glucuronidase
;
Orchidaceae
;
genetics
;
Plants, Genetically Modified
;
genetics
;
Polymerase Chain Reaction
;
Transformation, Genetic
4.Cloning and bioinformatic analysis and expression analysis of beta-glucuronidase in Scutellaria baicalensis.
Shuang-shuang GUO ; Lin CHENG ; Li-min YANG ; Mei HAN
China Journal of Chinese Materia Medica 2015;40(22):4370-4377
The β-Glucuronidase gene (sbGUS) cDNA firstly from Scutellari abaicalensis leaf was cloned by RT-PCR, with GenBank accession number KR364726. The full length cDNA of sbGUS was 1 584 bp with an open reading frame (ORF), encoding an unstable protein with 527 amino acids. The bioinformatic analysis showed that the sbGUS encoding protein had isoelectric point (pI) of 5.55 and a calculated molecular weight about 58.724 8 kDa, with a transmembrane regions and signal peptide, had conserved domains of glycoside hydrolase super family and unintegrated trans-glycosidase catalytic structure. In the secondary structure, the percentage of alpha helix, extended strand, β-extended and random coil were 25.62%, 28.84%, 13.28% and 32.26%, respectively. The homologous analysis indicated the nucleotide sequence 98.93% similarity and the amino acid sequence 98.29% similarity with S. baicalensis (BAA97804.1), in the nine positions were different. The expression level of sGUS was the highest in root based on a real-time PCR analysis, followed by flower and stem, and the lowest was in stem. The results provide a foundation for exploring the molecular function of sbGUS involved in baicalcin biosynthesis based on synthetic biology approach in S. baicalensis plants.
Amino Acid Sequence
;
Base Sequence
;
Cloning, Molecular
;
Computational Biology
;
Glucuronidase
;
chemistry
;
genetics
;
metabolism
;
Molecular Sequence Data
;
Open Reading Frames
;
Phylogeny
;
Plant Proteins
;
chemistry
;
genetics
;
metabolism
;
Protein Structure, Secondary
;
Scutellaria baicalensis
;
chemistry
;
enzymology
;
genetics
;
Sequence Alignment
5.The renin-angiotensin system and aging in the kidney.
The Korean Journal of Internal Medicine 2014;29(3):291-295
Aging is associated with progressive functional deterioration and structural changes in the kidney. Changes in the activity or responsiveness of the renin-angiotensin system (RAS) occur with aging. RAS changes predispose the elderly to various fluid and electrolyte imbalances as well as acute kidney injury and chronic kidney disease. Among the multiple pathways involved in renal aging, the RAS plays a central role. This review summarizes the association of the RAS with structural and functional changes in the aging kidney and age-related renal injury, and describes the underlying mechanisms of RAS-related renal aging. An improved understanding of the renal aging process may lead to better individualized care of the elderly and improved renal survival in age-related diseases.
Acute Kidney Injury/etiology/metabolism/physiopathology
;
Age Factors
;
Aging/genetics/*metabolism
;
Animals
;
Glucuronidase/genetics/metabolism
;
Humans
;
Kidney/*metabolism/physiopathology
;
Kidney Diseases/*etiology/genetics/metabolism/physiopathology
;
Prognosis
;
*Renin-Angiotensin System
;
Risk Factors
6.Expression of hippocampus Klotho protein and insulin-like growth factor-1 in rats with dementia.
Han WANG ; Jirong YUE ; Jun LUO ; Peng TIAN ; Juelin DENG
Journal of Biomedical Engineering 2013;30(4):808-811
This study aims to assess the expression of Klotho and insulin-like growth factor-1 (IGF-1) and the association between Klotho and IGF-1 in rats with dementia model. Thirty rats were randomly divided into three groups. Morris water maze was used to investigate the learning and memory functions, and enzyme linked immunosorbent assay was used to analyze the levels of Klotho and IGF-1. Klotho and IGF-1 levels in the model group were lower than those in other 2 groups. Morris water maze test showed that the model group had longer escape latency times and shorter step platform times compared to other groups. Line correlation model demonstrated that Klotho level was positively correlated with IGF-1 level in rats with dementia (P= 0. 029). The levels of Klotho and IGF-1 both reduced at hippocampus in rats with dementia model, suggesting that it may be a close relationship between Klotho and IGF-1 in the pathogenesis of dementia.
Animals
;
Dementia
;
metabolism
;
Female
;
Glucuronidase
;
genetics
;
metabolism
;
Hippocampus
;
metabolism
;
Insulin-Like Growth Factor I
;
genetics
;
metabolism
;
Male
;
Maze Learning
;
Memory
;
physiology
;
Rats
;
Rats, Wistar
7.Study on the effect of Klotho gene interferred by plasmid-mediated short hairpin RNA (shRNA) on sinoatrial node pacing channel gene.
Yingying CAI ; Han WANG ; Yanbin HOU ; Chenli FANG ; Peng TIAN ; Guihua WANG ; Lu LI ; Juelin DENG
Journal of Biomedical Engineering 2013;30(3):588-591
The study was aimed to assess the effect of Klotho gene and sinoatrial node pacing channel gene (HCN4 and HCN2) for studying sick sinus syndrome, with Klotho gene under the interference of Plasmid-mediated short hairpin RNA. Twenty-five C57BL/6J mice were divided into four groups, i. e, plasmid shRNA 24h group, plasmid shRNA 12h group, sodium chloride 24h group and sodium chloride 12h group. Plasmid shRNA 50microL (1microg/microL) and sodium chloride 50microl were respectively injected according to mice vena caudalis into those in plasmid shRNA group and sodium chloride group. After 12h or 24h respectively, all mice were executed and their sinoatrial node tissues were cut. The mRNA of Klotho, HCN4 and HCN2 gene were detected by RT-PCR. The results of RT-PCR showed that Klotho, HCN4 and HCN2 mRNA levels were lower compared with those in sodium chloride 12h group after 12h interference interval. The results indicated that there might be the a certain relationship between Klotho gene and sinoatrial node pacing channel gene.
Animals
;
Glucuronidase
;
genetics
;
Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels
;
genetics
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Plasmids
;
genetics
;
Potassium Channels
;
genetics
;
metabolism
;
RNA Interference
;
RNA, Messenger
;
genetics
;
metabolism
;
RNA, Small Interfering
;
genetics
;
Sinoatrial Node
;
metabolism
;
physiology
;
physiopathology
8.Construction of a lentiviral RNA interference system targeting heparanase based on miR30 and its silencing effect.
Xiaoyan LIU ; Hong FANG ; Dingxian ZHU ; Yu ZHANG
Journal of Zhejiang University. Medical sciences 2013;42(1):67-74
OBJECTIVETo construct a lentiviral RNA interference system targeting heparanase (HPSE) based on miR30 and to test its silencing effect.
METHODSThree heparanase-shRNA structures were designed based miR30. The targeting fragments were obtained by PCR, then inserted into the vector LV PP-GFP to construct the recombinant lentiviral vector LV PP-GFP/miR-HPSE-shRNA, which was identified by PCR and sequencing. The 293T cells were co-transfect with LV PP-GFP/miR-HPSE-shRNA, pHelper 1.0 vector and pHelper 2.0 vector to produce lentiviruses, with which A375 cells were infected. Real-time fluorescence quantitative PCR and Western blot were performed to evaluate the expression of heparanase RNA and protein.
RESULTSThe lentiviral miR30-based RNAi vector targeting heparanase was constructed and confirmed by PCR and sequencing. The results of real-time fluorescence quantitative PCR and Western blot showed that the expression levels of both heparanase mRNA and protein in infected A375 cells were decreased significantly than those in control group.
CONCLUSIONThe lentiviral miR30-based RNAi vector targeting heparanase was been constructed successfully, which can be used for further study on RNAi-mediated oncolytic viruses.
Genetic Vectors ; Glucuronidase ; genetics ; Lentivirus ; genetics ; MicroRNAs ; genetics ; RNA Interference ; RNA, Small Interfering ; genetics
9.Dentin matrix protein 1 and phosphate homeostasis are critical for postnatal pulp, dentin and enamel formation.
Afsaneh RANGIANI ; Zheng-Guo CAO ; Ying LIU ; Anika Voisey RODGERS ; Yong JIANG ; Chun-Lin QIN ; Jian-Quan FENG
International Journal of Oral Science 2012;4(4):189-195
Deletion or mutation of dentin matrix protein 1 (DMP1) leads to hypophosphatemic rickets and defects within the dentin. However, it is largely unknown if this pathological change is a direct role of DMP1 or an indirect role of phosphate (Pi) or both. It has also been previously shown that Klotho-deficient mice, which displayed a high Pi level due to a failure of Pi excretion, causes mild defects in the dentinal structure. This study was to address the distinct roles of DMP1 and Pi homeostasis in cell differentiation, apoptosis and mineralization of dentin and enamel. Our working hypothesis was that a stable Pi homeostasis is critical for postnatal tooth formation, and that DMP1 has an antiapoptotic role in both amelogenesis and dentinogenesis. To test this hypothesis, Dmp1-null (Dmp1(-/-)), Klotho-deficient (kl/kl), Dmp1/Klotho-double-deficient (Dmp1(-/-)/kl/kl) and wild-type (WT) mice were killed at the age of 6 weeks. Combinations of X-ray, microcomputed tomography (μCT), scanning electron microscopy (SEM), histology, apoptosis and immunohistochemical methods were used for characterization of dentin, enamel and pulp structures in these mutant mice. Our results showed that Dmp1(-/-) (a low Pi level) or kl/kl (a high Pi level) mice displayed mild dentin defects such as thin dentin and a reduction of dentin tubules. Neither deficient mouse line exhibited any apparent changes in enamel or pulp structure. However, the double-deficient mice (a high Pi level) displayed severe defects in dentin and enamel structures, including loss of dentinal tubules and enamel prisms, as well as unexpected ectopic ossification within the pulp root canal. TUNEL assay showed a sharp increase in apoptotic cells in ameloblasts and odontoblasts. Based on the above findings, we conclude that DMP1 has a protective role for odontoblasts and ameloblasts in a pro-apoptotic environment (a high Pi level).
Ameloblasts
;
pathology
;
Amelogenesis
;
physiology
;
Animals
;
Apoptosis
;
physiology
;
Cell Differentiation
;
physiology
;
Dental Enamel
;
pathology
;
Dental Pulp
;
pathology
;
physiology
;
Dental Pulp Cavity
;
pathology
;
Dentin
;
abnormalities
;
pathology
;
Dentinogenesis
;
physiology
;
Extracellular Matrix Proteins
;
genetics
;
physiology
;
Glucuronidase
;
genetics
;
Homeostasis
;
physiology
;
Hyperphosphatemia
;
physiopathology
;
Immunohistochemistry
;
Mice
;
Mice, Knockout
;
Microscopy, Electron, Scanning
;
Odontoblasts
;
pathology
;
Odontogenesis
;
physiology
;
Ossification, Heterotopic
;
genetics
;
pathology
;
Phosphates
;
physiology
;
Tooth Calcification
;
physiology
;
X-Ray Microtomography
10.Effect of different developmental stage on plant growth and active compounds in Scutellaria baicalensis.
Guo-Qiang HU ; Yuan YUAN ; Chong WU ; Chao JIANG ; Zhou-Yong WANG ; Shu-Fang LIN ; Zhi-Gang WU
China Journal of Chinese Materia Medica 2012;37(24):3793-3798
OBJECTIVETo study the developmental phase on the growth and active compounds in Scutellaria baicalensis.
METHODSeeds of wild plants were collected from Laiwu and sowed in Fangshan (Beijing) and Laiwu (Shandong). Samples of aerial and underground parts were collected in five growth periods of sprouts, seedlings, flowering, seed drop and withered periods respectively. The length of taproot, fresh weight of root, diameter of taproot and the length of stem were determined. The content of active compounds and total flavonoids were determined by HPLC and ultraviolet spectrophotometry respectively. The transcripted level of PAL1, PAL2, PAL3, C4H, 4CL, CHS, GUS and UBGAT were analyzed with RT-PCR.
RESULTThe results showed that the aerial part of S. baicalensis grew quickly before flowering stage, and the underground part grew mostly between the periods of flowering and withered. In the whole growing developmental periods, the content of total flavonoids was not changed significantly, the content of baicalin was increased gradually and the content of baicalein was decreased gradually. Expression level of PAL and 4CL was the highest in withered period, CHS was increased between flowering and seed drop and decreased in withered period.
CONCLUSIONSeedlings and withered periods may be the key phase affecting the growth and active compounds in S. baicalensis.
Acyltransferases ; genetics ; metabolism ; Chromatography, High Pressure Liquid ; Coenzyme A Ligases ; genetics ; metabolism ; Flavonoids ; analysis ; metabolism ; Flowers ; genetics ; growth & development ; metabolism ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Enzymologic ; Gene Expression Regulation, Plant ; Glucuronidase ; genetics ; metabolism ; Glucuronosyltransferase ; genetics ; metabolism ; Phenylalanine Ammonia-Lyase ; genetics ; metabolism ; Plant Proteins ; genetics ; metabolism ; Plant Roots ; genetics ; growth & development ; metabolism ; Plant Stems ; genetics ; growth & development ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Scutellaria baicalensis ; genetics ; growth & development ; metabolism ; Seedlings ; genetics ; growth & development ; metabolism ; Spectrophotometry, Ultraviolet ; Time Factors ; Trans-Cinnamate 4-Monooxygenase ; genetics ; metabolism

Result Analysis
Print
Save
E-mail