1.A prospective study of genetic screening of 2 060 neonates by high-throughput sequencing.
Danyan ZHUANG ; Fei WANG ; Shuxia DING ; Zhoushu ZHENG ; Qi YU ; Lanqiu LYU ; Shuni SUN ; Rulai YANG ; Wenwen QUE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(6):641-647
OBJECTIVE:
To assess the value of genetic screening by high-throughput sequencing (HTS) for the early diagnosis of neonatal diseases.
METHODS:
A total of 2 060 neonates born at Ningbo Women and Children's Hospital from March to September 2021 were selected as the study subjects. All neonates had undergone conventional tandem mass spectrometry metabolite analysis and fluorescent immunoassay analysis. HTS was carried out to detect the definite pathogenic variant sites with high-frequency of 135 disease-related genes. Candidate variants were verified by Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 2 060 newborns, 31 were diagnosed with genetic diseases, 557 were found to be carriers, and 1 472 were negative. Among the 31 neonates, 5 had G6PD, 19 had hereditary non-syndromic deafness due to variants of GJB2, GJB3 and MT-RNR1 genes, 2 had PAH gene variants, 1 had GAA gene variants, 1 had SMN1 gene variants, 2 had MTTL1 gene variants, and 1 had GH1 gene variants. Clinically, 1 child had Spinal muscular atrophy (SMA), 1 had Glycogen storage disease II, 2 had congenital deafness, and 5 had G6PD deficiency. One mother was diagnosed with SMA. No patient was detected by conventional tandem mass spectrometry. Conventional fluorescence immunoassay had revealed 5 cases of G6PD deficiency (all positive by genetic screening) and 2 cases of hypothyroidism (identified as carriers). The most common variants identified in this region have involved DUOX2 (3.93%), ATP7B (2.48%), SLC26A4 (2.38%), GJB2 (2.33%), PAH (2.09%) and SLC22A5 genes (2.09%).
CONCLUSION
Neonatal genetic screening has a wide range of detection and high detection rate, which can significantly improve the efficacy of newborn screening when combined with conventional screening and facilitate secondary prevention for the affected children, diagnosis of family members and genetic counseling for the carriers.
Child
;
Infant, Newborn
;
Humans
;
Female
;
Prospective Studies
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Glucosephosphate Dehydrogenase Deficiency
;
Mutation
;
Sulfate Transporters/genetics*
;
DNA Mutational Analysis
;
Genetic Testing/methods*
;
Deafness/genetics*
;
Neonatal Screening/methods*
;
Hearing Loss, Sensorineural/genetics*
;
High-Throughput Nucleotide Sequencing
;
Solute Carrier Family 22 Member 5/genetics*
2.Genetic Mutation Characteristics of Glucose-6-Phosphate Dehydrogenase Deficiency Patients in Wuhan.
Hui LI ; Yu-Fei JIANG ; Tang-Xin-Zi GAO ; Me-Qi YI ; Xiao-Yan WANG ; Run-Hong XU ; Jie-Ping SONG ; Li-Jun LIU
Journal of Experimental Hematology 2022;30(1):244-249
OBJECTIVE:
To explore the genotype mutation characteristics of patients with glucose-6-phosphate dehydrogenase(G6PD) deficiency in Wuhan.
METHODS:
A total of 1 321 neonates with positive screening and outpatients were received G6PD mutation detection, 12 kinds of common G6PD mutation in Chinese people was detected by using multicolor melting curve analysis (MMCA) method, for those with negative results, the enzyme activity and clinical information were analyzed, sequencing was recommended after informed consent when it is necessary.
RESULTS:
Among 1321 patients, a total of 768 mutations were detected out, with a detection rate of 58.1%. A total of 18 types of G6PD genotypes were identified, including c.1388G>A, c.1376G>T, c.95G>A, c.1024C>T, c.871G>A, c.392G>T, c.487G>A, c.1360C>T, c.1004C>A, c.517T>C, c.592C>T, c.94C>G, c.152C>T, c.320A>G, c.1028A>G, c.1316G>A, c.1327G>C and c.1376G>C, including 683 male hemizygotes, 3 female homozygotes, 80 female heterozygotes and 2 female compound heterozygous.
CONCLUSION
A total of 18 types of G6PD mutations are identified in the reaserch, and c.94C>G, c.1028A>G and c.1327G>C are first reported in Chinese population. The most common G6PD mutation types in Wuhan are c.1388G>A, c.1376G>T, c.95G>A.
Asians/genetics*
;
Female
;
Genotype
;
Glucosephosphate Dehydrogenase/genetics*
;
Glucosephosphate Dehydrogenase Deficiency/genetics*
;
Heterozygote
;
Humans
;
Infant, Newborn
;
Male
;
Mutation
3.Screening results and genetic features of glucose-6-phosphate dehydrogenase deficiency in 54 025 preterm infants in Chengdu, China.
Zhou JIANG ; Mei WANG ; Li TANG ; Xiao-Li LI ; Chun-Rong LI ; Xin-Ran CHENG
Chinese Journal of Contemporary Pediatrics 2021;23(5):482-487
OBJECTIVE:
To analyze the screening results of glucose-6-phosphate dehydrogenase (G6PD) deficiency and gene mutation distribution of G6PD deficiency in preterm infants in Chengdu, China, in order to provide a basis for the improvement of G6PD screening process in preterm infants.
METHODS:
Fluorescent spot test for G6PD deficiency using dried blood spots was used for G6PD screening of 54 025 preterm infants born from January 1, 2015 to December 31, 2019 in Chengdu, and G6PD enzymology and gene detection were used for the diagnosis of 213 infants with positive screening results.
RESULTS:
Among the 54 025 preterm infants, 192 were diagnosed with G6PD deficiency, with an incidence rate of 3.55‰. The incidence rate of G6PD deficiency in preterm infants was higher than that in full-term infants in the same period of time and tended to increase year by year. Birth in summer, gestational age <32 weeks, and birth weight <2 500 g were influencing factors for the increase in false positive rate of screening (
CONCLUSIONS
Screening for G6PD deficiency in preterm infants should be taken seriously. It is recommended to apply cold-chain transportation of samples in summer to reduce the false positive rate of primary screening for G6PD deficiency. Genetic tests should be promoted in girls with positive screening results to improve the detection rate of G6PD deficiency in preterm female infants. There are various types of gene mutations in preterm infants with G6PD deficiency in Chengdu, and infants with c.1024C>T mutation tend to have mild conditions.
China/epidemiology*
;
Female
;
Genetic Testing
;
Glucosephosphate Dehydrogenase/genetics*
;
Glucosephosphate Dehydrogenase Deficiency/genetics*
;
Humans
;
Infant
;
Infant, Newborn
;
Infant, Premature
;
Mutation
4.Genetic mutation screening of glucose-6-phosphate dehydrogenase deficiency in Dongguan district.
Ying ZHAO ; Jingfan WU ; Jianqun LI ; Xun YU ; Youqing FU ; Yanhui LIU ; Aijuan XU
Chinese Journal of Medical Genetics 2018;35(6):840-843
OBJECTIVE:
To determine the incidence and genotypes of glucose-6-phosphate dehydrogenase (G6PD) deficiency in Dongguan region of Guangdong Province and assess the efficacy and feasibility of flow-through hybridization.
METHODS:
Peripheral blood samples were randomly selected and detected by modified G6PD/6PGD ratio method. Flow-through hybridization was used to detect 14 G6PD mutations among all samples.
RESULTS:
In total 1005 samples were collected, the detection rate for modified G6PD/6PGD ratio method and flow-through hybridization were 2.79% and 20.90%, respectively. The consistency of the two methods was poor(Kappa=0.187). When c.1311C>T mutation is excluded, the consistency of the two methods was good for males (Kappa=0.952) but still poor for females (Kappa=0.194). The most common mutations were c.1376G>T, c.1388G>A and c.95A>G. No G6PD deficiency was found among those only carrying the c.1311C>T mutation.
CONCLUSION
Flow-through hybridization can simultaneously detect 14 loci, covering over 90% of common mutations in Chinese population, and can be easily expanded. The routine method may miss many females carrying homozygous, compound heterozygous and heterozygous mutations, but the detection rate for male hemizygous mutation was much higher.
China
;
DNA Mutational Analysis
;
Female
;
Genetic Testing
;
Genotype
;
Glucosephosphate Dehydrogenase
;
genetics
;
Glucosephosphate Dehydrogenase Deficiency
;
diagnosis
;
Humans
;
Male
;
Mutation
5.Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency.
Jaewoong LEE ; Joonhong PARK ; Hayoung CHOI ; Jiyeon KIM ; Ahlm KWON ; Woori JANG ; Hyojin CHAE ; Myungshin KIM ; Yonggoo KIM ; Jae Wook LEE ; Nack Gyun CHUNG ; Bin CHO
Annals of Laboratory Medicine 2017;37(2):108-116
BACKGROUND: We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis. METHODS: In parallel with a genetic analysis, the pathogenicity of G6PD mutations detected in Korean patients was predicted in silico. The simulated effects of G6PD mutations were compared to the WHO classes based on G6PD enzyme activity. Four previously reported mutations and three newly diagnosed patients with missense mutations were estimated. RESULTS: One novel mutation (p.Cys385Gly, labeled G6PD Kangnam) and two known mutations [p.Ile220Met (G6PD São Paulo) and p.Glu416Lys (G6PD Tokyo)] were identified in this study. G6PD mutations identified in Koreans were also found in Brazil (G6PD São Paulo), Poland (G6PD Seoul), United States of America (G6PD Riley), Mexico (G6PD Guadalajara), and Japan (G6PD Tokyo). Several mutations occurred at the same nucleotide, but resulted in different amino acid residue changes in different ethnic populations (p.Ile380 variant, G6PD Calvo Mackenna; p.Cys385 variants, Tomah, Madrid, Lynwood; p.Arg387 variant, Beverly Hills; p.Pro396 variant, Bari; and p.Pro396Ala in India). On the basis of the in silico analysis, Class I or II mutations were predicted to be highly deleterious, and the effects of one Class IV mutation were equivocal. CONCLUSIONS: The genetic profiles of Korean individuals with G6PD mutations indicated that the same mutations may have arisen by independent mutational events, and were not derived from shared ancestral mutations. The in silico analysis provided insight into the role of G6PD mutations in enzyme function and stability.
Asian Continental Ancestry Group/*genetics
;
Child
;
Child, Preschool
;
DNA/chemical synthesis/genetics/metabolism
;
Exons
;
Glucosephosphate Dehydrogenase/chemistry/*genetics/metabolism
;
Glucosephosphate Dehydrogenase Deficiency/*genetics/pathology
;
Humans
;
Male
;
Mutation, Missense
;
Polymorphism, Genetic
;
Protein Structure, Tertiary
;
Republic of Korea
;
Sequence Analysis, DNA
6.Molecular epidemiology of G6PD deficiency in Chaozhou area of eastern Guangdong Province.
Fen LIN ; Jiaoren WU ; Hui YANG ; Min LIN ; Liye YANG
Chinese Journal of Medical Genetics 2016;33(1):26-29
OBJECTIVETo determine the incidence and molecular characteristics of G6PD deficiency in Chaozhou region of eastern Guangdong Province.
METHODSG6PD enzyme activity was assayed with an auto-bioanalyzer. Reverse dot blotting (RDB) was used for detecting 6 common G6PD mutations. Samples with no mutation detected by RDB were further sequenced for unknown mutations.
RESULTSThe rate of G6PD deficiency was 3.36% (142/4224). 2.33% (47/2013) of males and 4.3% (95/2208) of females were affected. 12 mutations were detected among the 142 patients, which included c.1376G>T, c.1388G>A, c.1024C>T, c.392G>T, c.871G>A, c.95A>G, c.517T>C, c.131C>G, c.1376G>T/c.517T>C, c.871G>A/IVS-1193T>C/c.1311C>T, c.1376G>T/IVS-11, 93T>C/c.1311C>T and c.1376G>T/c.486_34delT (rs3216174).
CONCLUSIONThe incidence of G6PD deficiency in Chaozhou region was lower than that of the Hakka population of Guangdong Province, and the mutation types were diversely distributed in this region. c.1376G>T, c.1388G>A and c.1024C>T were the most common mutations, which was followed by c.517T>C. In addition, c.131C>G has been first discovered in the Chinese population. c.1376G>T/c.517T>C and c.1376G>T/c.486_34delT(rs3216174) were new types of compound heterozygous mutations in females.
Adolescent ; Base Sequence ; China ; epidemiology ; ethnology ; Female ; Genotype ; Glucosephosphate Dehydrogenase ; genetics ; Glucosephosphate Dehydrogenase Deficiency ; enzymology ; epidemiology ; ethnology ; genetics ; Humans ; Incidence ; Male ; Molecular Epidemiology ; Molecular Sequence Data ; Mutation
7.Detection of gene mutation in glucose-6-phosphate dehydrogenase deficiency by RT-PCR sequencing.
Rong-Yu LYU ; Xiao-Wen CHEN ; Min ZHANG ; Yun-Sheng CHEN ; Jie YU ; Fei-Qiu WEN
Chinese Journal of Contemporary Pediatrics 2016;18(7):630-634
OBJECTIVESince glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary hemolytic erythrocyte enzyme deficiency, most cases have single nucleotide mutations in the coding region, and current test methods for gene mutation have some missed detections, this study aimed to investigate the feasibility of RT-PCR sequencing in the detection of gene mutation in G6PD deficiency.
METHODSAccording to the G6PD/6GPD ratio, 195 children with anemia of unknown cause or who underwent physical examination between August 2013 and July 2014 were classified into G6PD-deficiency group with 130 children (G6PD/6GPD ratio <1.00) and control group with 65 children (G6PD/6GPD ratio≥1.00). The primer design and PCR amplification conditions were optimized, and RT-PCR sequencing was used to analyze the complete coding sequence and verify the genomic DNA sequence in the two groups.
RESULTSIn the G6PD-deficiency group, the detection rate of gene mutation was 100% and 13 missense mutations were detected, including one new mutation. In the control group, no missense mutation was detected in 28 boys; 13 heterozygous missense mutations, 1 homozygous same-sense mutation (C1191T) which had not been reported in China and abroad, and 14 single nucleotide polymorphisms of C1311T were detected in 37 girls. The control group showed a high rate of missed detection of G6PD deficiency (carriers) in the specimens from girls (35%, 13/37).
CONCLUSIONSRT-PCR sequencing has a high detection rate of G6PD gene mutation and a certain value in clinical diagnosis of G6PD deficiency.
Adolescent ; Child ; Child, Preschool ; Female ; Glucosephosphate Dehydrogenase ; genetics ; Glucosephosphate Dehydrogenase Deficiency ; diagnosis ; genetics ; Humans ; Infant ; Male ; Mutation ; Reverse Transcriptase Polymerase Chain Reaction ; methods ; Sequence Analysis, DNA
8.Gene promoter methylation in glucose-6-phosphate dehydrogenase deficiency.
Dan-Dan XU ; Fei-Qiu WEN ; Rong-Yu LV ; Min ZHANG ; Yun-Sheng CHEN ; Xiao-Wen CHEN
Chinese Journal of Contemporary Pediatrics 2016;18(5):405-409
OBJECTIVETo investigate the features of methylation in the promoter region of glucose-6-phosphate dehydrogenase (G6PD) gene and the association between gene promoter methylation and G6PD deficiency.
METHODSFluorescent quantitative PCR was used to measure the mRNA expression of G6PD in 130 children with G6PD deficiency. Sixty-five children without G6PD deficiency served as the control group. The methylation-sensitive high-resolution melting curve analysis and bisulfite PCR sequencing were used to analyze gene promoter methylation in 22 children with G6PD deficiency and low G6PD mRNA expression. The G6PD gene promoter methylation was analyzed in 44 girls with normal G6PD mRNA expression (7 from G6PD deficiency group and 37 from control group).
RESULTSTwenty-two (16.9%) children with G6PD deficiency had relatively low mRNA expression of G6PD; among whom, 16 boys showed no methylation, and 6 girls showed partial methylation. Among the 44 girls with normal G6PD mRNA expression, 40 showed partial methylation, and 4 showed no methylation (1 case in the G6PD group and 3 cases in the control group).
CONCLUSIONSGene promoter methylation is not associated with G6PD deficiency in boys. Girls have partial methylation or no methylation in the G6PD gene, suggesting that the methylation may be related to G6PD deficiency in girls.
Adolescent ; Child ; Child, Preschool ; DNA Methylation ; Female ; Glucosephosphate Dehydrogenase ; genetics ; Glucosephosphate Dehydrogenase Deficiency ; genetics ; Humans ; Infant ; Male ; Promoter Regions, Genetic ; RNA, Messenger ; analysis ; Sex Characteristics
9.Research progress on the relationship between SLCO1B1 gene and neonatal jaundice.
Chinese Journal of Contemporary Pediatrics 2014;16(11):1183-1187
Organic anion transporter 2 (OATP2) is an uptake transporter located on the basolateral membrane of human hepatocytes. It mediates the transportation of various organic solutes including bilirubin and impacts bilirubin metabolism. It is encoded by the gene of solute carrier organic anion transporter family member 1B1 and the gene variants that inhibit hepatic bilirubin uptake function may reduce the normal functional level of bilirubin elimination and result in neonatal hyperbilirubinemia. In recent years, some studies have indicated that variants of SLCO1B1 are associated with neonatal jaundice. This article reviews the research advance in SLCO1B1 with respect to the structure and function and the relationship between SLCO1B1 mutations and neonatal jaundice.
Glucosephosphate Dehydrogenase Deficiency
;
genetics
;
Humans
;
Infant, Newborn
;
Jaundice, Neonatal
;
genetics
;
Organic Anion Transporters
;
genetics
;
Polymorphism, Genetic
;
Solute Carrier Organic Anion Transporter Family Member 1b1
;
genetics
10.G6PD deficiency among children under 7 years old from Yunnan with unique ethnic minority origin.
Li-qin YAO ; Tuan-biao ZOU ; Xing-tian WANG ; Xing QUAN ; Qian CHEN ; Fa-bin YANG ; Li-sha HU ; Li-mei FAN ; Min WANG ; Xi-yun FENG ; Jin-tao LIU ; Zhong-ming ZHAO
Chinese Journal of Medical Genetics 2013;30(2):189-194
OBJECTIVETo investigate the epidemiological status of glucose-6-phosphate dehydrogenase (G6PD) deficiency among children from Yunnan with unique ethnic origins.
METHODSDNA samples from 11759 children were tested with fluorescent spot test, G6PD/6PGD quantitative ratio assay and hemoglobin electrophoresis.
RESULTSThe detection rate of G6PD deficiency was 2.5%, for which boys were significantly greater than girls (3.5% vs. 1.4%, P<0.05). Significant differences were also detected among children from different ethnic groups and different regions. For ethnic Han Chinese, the detection rate was 0.7%, which was lower than the majority of ethnic minorities. By regression analysis, altitude of residence and family history both have significant influence on the calculated rate.
CONCLUSIONOccurrence of G6PD deficiency seems to be influenced by gender. It also varies substantially between different ethnic groups as well as regions, e.g., more common in south. It also showed a declining trend after years of diagnosis and intervention. This survey may provide a valuable basis for counseling of G6PD deficiency in Yunnan.
Child ; Child, Preschool ; China ; ethnology ; Female ; Glucosephosphate Dehydrogenase Deficiency ; ethnology ; genetics ; Humans ; Infant ; Infant, Newborn ; Logistic Models ; Male

Result Analysis
Print
Save
E-mail