1.Effect of Jianpi Huogu Formula on function damage of vascular endothelial cells induced by glucocorticoid.
Teng-Teng XU ; Jin-Xia WANG ; Rui-Rui MING ; Chao YANG ; Luo-Chang-Ting FANG ; Xiao-Xiao WANG ; Zhi-Xing HU ; Wei-Heng CHEN ; Chun-Fang LIU ; Na LIN
China Journal of Chinese Materia Medica 2022;47(6):1625-1631
This study aimed to observe the intervention effect of Jianpi Huogu Formula(JPHGF) on the functional damage of vascular endothelial cells caused by glucocorticoid, and explore its action mechanism from the PI3 K/Akt and mitogen activated protein kinase(MAPK) signaling pathways. The extracted thoracic aorta ring of normal SD rats were intervened first with vascularendothelial growth factor(VEGF, 20 μg·L-1) and/or sodium succinate(MPS, 0. 04 g·L-1) in vitro and then with JPHGF(8, 16, and 32 μg·L-1) for five mcontinuous ethylpdays, rednisolofollowed nebythe statistics of the number, length, and area of microvessels budding fromvascular rings. In addition, the human umbilical vein endothelial cells(HUVECs) induced by VEGF(20 μg·L-1) were added with MPS(0. 04 g·L-1) and then with JPHGF(8, 16, and 32 μg·L-1) for observing the migration, invasion, and luminal formation abilities of HUVECs in the migration, invasion and luminal formation experiments. The protein expression levels of PI3 K, p-Akt, p-JN K, and p-ERK in HUVECs were assayed by Western blot. The results showed that JPHGF dose-dependently improved the num-ber,length, and area of microvessels in MPS-induced rat thoracic aortic ring, reversed the migration, invasion and lumen formation abiliti es of HUVECs reduced by MPS, and up-regulated the protein expression levels of PI3 K, p-Akt, and p-JNK in HUVECs. All thesehave suggested that JPHGF exerts the protective effect against hormone-induced damage to the angiogenesis of vascular endothelial cells by activating the PI3 K/Akt and MAPK signaling pathways, which has provided reference for exploring the mechanism of JPHGF in treating s teroid-induced avascular necrosis of femoral head(SANFH) and also the experimental evidence for enriching the scientific connotationof spleen-invigorating and blood-activating therapy.
Animals
;
Glucocorticoids/pharmacology*
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Neovascularization, Pathologic/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Vascular Endothelial Growth Factor A/metabolism*
2.Interferon-α2b spray inhalation did not shorten virus shedding time of SARS-CoV-2 in hospitalized patients: a preliminary matched case-control study.
Shao-Rui HAO ; Ren YAN ; Shan-Yan ZHANG ; Jiang-Shan LIAN ; Huan CAI ; Xiao-Li ZHANG ; Lin ZHENG ; Hong-Yu JIA ; Jian-Hua HU ; Guo-Dong YU ; Jue-Qing GU ; Chan-Yuan YE ; Ci-Liang JIN ; Ying-Feng LU ; Jiao-Jiao XIN ; Ji-Fang SHENG ; Yi-Da YANG
Journal of Zhejiang University. Science. B 2020;21(8):628-636
BACKGROUND:
Currently, there are no drugs that have been proven to be effective against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Because of its broad antiviral activity, interferon (IFN) should be evaluated as a potential therapeutic agent for treatment of coronavirus disease 2019 (COVID-19), especially while COVID-19-specific therapies are still under development.
METHODS:
Confirmed COVID-19 patients hospitalized in the First Affiliated Hospital, School of Medicine, Zhejiang University in Hangzhou, China, from January 19 to February 19, 2020 were enrolled in a retrospective study. The patients were separated into an IFN group and a control group according to whether they received initial IFN-α2b inhalation treatment after admission. Propensity-score matching was used to balance the confounding factors.
RESULTS:
A total of 104 confirmed COVID-19 patients, 68 in the IFN group and 36 in the control group, were enrolled. Less hypertension (27.9% vs. 55.6%, P=0.006), dyspnea (8.8% vs. 25.0%, P=0.025), or diarrhea (4.4% vs. 19.4%, P=0.030) was observed in the IFN group. Lower levels of albumin and C-reactive protein and higher level of sodium were observed in the IFN group. Glucocorticoid dosage was lower in the IFN group (median, 40 vs. 80 mg/d, P=0.025). Compared to the control group, fewer patients in the IFN group were ventilated (13.2% vs. 33.3%, P=0.015) and admitted to intensive care unit (ICU) (16.2% vs. 44.4%, P=0.002). There were also fewer critical patients in the IFN group (7.4% vs. 25.0%, P=0.017) upon admission. Although complications during admission process were comparable between groups, the discharge rate (85.3% vs. 66.7%, P=0.027) was higher and the hospitalization time (16 vs. 21 d, P=0.015) was shorter in the IFN group. When other confounding factors were not considered, virus shedding time (10 vs. 13 d, P=0.014) was also shorter in the IFN group. However, when the influence of other factors was eliminated using propensity score matching, virus shedding time was not significantly shorter than that of the control group (12 vs. 15 d, P=0.206).
CONCLUSIONS
IFN-α2b spray inhalation did not shorten virus shedding time of SARS-CoV-2 in hospitalized patients.
Albumins/analysis*
;
Antiviral Agents/administration & dosage*
;
Betacoronavirus
;
C-Reactive Protein/analysis*
;
COVID-19
;
Case-Control Studies
;
China
;
Coronavirus Infections/drug therapy*
;
Glucocorticoids/pharmacology*
;
Hospitalization
;
Humans
;
Interferon alpha-2/administration & dosage*
;
Nasal Sprays
;
Pandemics
;
Pneumonia, Viral/drug therapy*
;
Propensity Score
;
Retrospective Studies
;
SARS-CoV-2
;
Sodium/blood*
;
Virus Shedding/drug effects*
;
COVID-19 Drug Treatment
3.Cathelicidin LL-37 restoring glucocorticoid function in smoking and lipopolysaccharide-induced airway inflammation in rats.
Jian-Zhen WENG ; Yan WANG ; Tie-Ying SUN
Chinese Medical Journal 2019;132(5):569-576
BACKGROUND:
Glucocorticoids have been widely used to treat patients with chronic obstructive pulmonary disease (COPD). Nevertheless, corticosteroid insensitivity is a major barrier to the effective treatment of COPD and its mechanism remains unclear. This study aimed to evaluate the effect of cathelicidin LL-37 on corticosteroid insensitivity in COPD rat model, and to explore the involved mechanisms.
METHODS:
COPD model was established by exposing male Wistar rats to cigarette smoke combined with intratracheal instillation of lipopolysaccharide (LPS). Inhaled budesonide and LL-37 were consequently applied to COPD models separately or collectively to confirm the effects on inflammatory cytokines (tumor necrosis factor [TNF]-α and transforming growth factor [TGF]-β) by enzyme-linked immunosorbent assay (ELISA) and lung tissue histopathological morphology. Expression of histone deacetylase-2 (HDAC2) and phosphorylation of Akt (p-AKT) in lung were also measured.
RESULTS:
Briefly, COPD model rats showed an increased basal release of inflammatory cytokines (lung TNF-α: 45.7 ± 6.1 vs. 20.1 ± 3.8 pg/mL, P < 0.01; serum TNF-α: 8.9 ± 1.2 vs. 6.7 ± 0.5 pg/mL, P = 0.01; lung TGF-β: 122.4 ± 20.8 vs. 81.9 ± 10.8 pg/mL, P < 0.01; serum TGF-β: 38.9 ± 8.5 vs. 20.6 ± 2.3 pg/mL, P < 0.01) and COPD related lung tissue histopathological changes, as well as corticosteroid resistance molecular profile characterized by an increase in phosphoinositide 3-kinase (PI3K)/Akt (0.5 ± 0.1 fold of control vs. 0.2 ± 0.1 fold of control, P = 0.04) and a decrease in HDAC2 expression and activity (expression: 13.1 ± 0.4 μmol/μg vs. 17.4 ± 1.1 μmol/μg, P < 0.01; activity: 1.1 ± 0.1 unit vs. 1.4 ± 0.1 unit, P < 0.01), compared with control group. In addition, LL-37 enhanced the anti-inflammatory effect of budesonide in an additive manner. Treatment with combination of inhaled corticosteroids (ICS) and LL-37 led to a significant increase of HDAC2 expression and activity (expression: 15.7 ± 0.4 μmol/μg vs. 14.1 ± 0.9 μmol/μg, P < 0.01; activity: 1.3 ± 0.1 unit vs. 1.0 ± 0.1 unit, P < 0.01), along with decrease of p-AKT compared to budesonide monotherapy (0.1 ± 0.0 fold of control vs. 0.3 ± 0.1 fold of control, P < 0.01).
CONCLUSIONS
This study suggested that LL-37 could improve the anti-inflammatory activity of budesonide in cigarette smoke and LPS-induced COPD rat model by enhancing the expression and activity of HDAC2. The mechanism of this function of LL-37 might involve the inhibition of PI3K/Akt pathway.
Animals
;
Antimicrobial Cationic Peptides
;
pharmacology
;
therapeutic use
;
Glucocorticoids
;
metabolism
;
Histone Deacetylase 2
;
metabolism
;
Humans
;
Inflammation
;
chemically induced
;
drug therapy
;
Lipopolysaccharides
;
pharmacology
;
Male
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Pulmonary Disease, Chronic Obstructive
;
drug therapy
;
metabolism
;
Rats
;
Rats, Wistar
;
Smoking
;
adverse effects
;
Tumor Necrosis Factor-alpha
;
metabolism
4.Effects of ginkgo biloba extract combined with glucocorticoid on olfactory function and inflammatory cytokines in mice with allergic rhinitis.
Chan WU ; Yong Xiang WEI ; Jayant Marian PINTO ; Jun TIAN ; Xian Dao YUAN ; Xiao Jun ZHAN
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2018;32(2):113-117
To determine whether ginkgo biloba extract(GBE)combined with dexamethasone(DEX)plays a role in the treatment of allergic rhinitis-related olfactory dysfunction using an animal model.Six week old BALB/C mice were sensitized and challenged with ovalbumin.30 sensitized mice were divided into three groups:Group 1 was given high-dose GBE and DEX(n=10);Group 2 was given low dose GBE and DEX(n=10);Group 3 was given DEX alone(n=10).We assessed the histology of the olfactory mucosa and serum IL-4,IFN-γ,and caspase 1.A significant higher fraction of mice in group 1 could find the food pellet within300 scompared to group 3(<0.05).Caspase-1 levels improved during the second week compared with the first week in each group.IFN-γlevels were significantly lower during the second week compared with the first week(<0.05,all).IL-4 levels also were significantly lower during the second week compared with the first week in all groups except those receiving DEX alone.IFN-γ/IL-4 levels in each group were significantly lower during the second week compared with the first week(<0.05,all).In this animal model of allergic rhinitis-related olfactory dysfunction,the addition of ginkgo biloba extract to dexamethasone have a better anti-inflammatory effect,which can partly improve the therapeutic effect on olfactory dysfunction caused by allergic rhinitis.
Animals
;
Cytokines
;
metabolism
;
Disease Models, Animal
;
Glucocorticoids
;
administration & dosage
;
pharmacology
;
Mice
;
Mice, Inbred BALB C
;
Plant Extracts
;
administration & dosage
;
pharmacology
;
Rhinitis, Allergic
;
drug therapy
;
immunology
5.Influence of dexamethasone on the cell polarity and PAR complex of the embryonic epithelial cells in the palate.
Ma LI ; Shi BING ; Zheng QIAN
West China Journal of Stomatology 2018;36(1):9-16
OBJECTIVE:
This study aims to investigate whether dexamethasone (DEX) can down-regulate the PAR complex and disrupt the cell polarity in the palatal epithelium during palatal fusion.
METHODS:
Pregnant rats were randomly divided into control and DEX groups, which were injected intraperitoneally with 0.9% sodium chloride (0.1 mL) and DEX (6 mg·kg ⁻¹), respectively, every day from E10 to E12. The palatal epithelial morphology was observed using hematoxylin and eosin staining and scanning electron microscopy. Immunofluorescence staining, Western Blot analysis, and real-time polymerase chain reaction were performed to detect the expression of PAR3, PAR6, and aPKC.
RESULTS:
The incidence of cleft palate in DEX group (46.15%) was significantly higher than that in control group (3.92%), and the difference was statistically significant (χ2=24.335, P=0.00). DEX can also retard the growth of the palatal shelves and the short palatal shelves. The morphology and arrangement of MEE cells changed from polarized bilayer cells to nonpolarized monolayer ones. Additionally, the spherical structure decreased, which caused the cleft palate. PAR3 and PAR6 were only detected in the palatal epithelium, and aPKC was expressed in the palatal epithelium and mesenchyme. DEX can reduce the expression levels of PAR3, PAR6, and aPKC in the protein and gene levels.
CONCLUSIONS
DEX can down-regulate the complex gene expression in the MEE cells, thereby destroying the cell polarity and causing cleft palate.
Animals
;
Carrier Proteins
;
physiology
;
Cell Polarity
;
drug effects
;
Cleft Palate
;
etiology
;
Dexamethasone
;
pharmacology
;
Epithelial Cells
;
drug effects
;
Female
;
Glucocorticoids
;
pharmacology
;
Palate
;
Pregnancy
;
Rats
6.Expression of heme oxygenase-1 in nasal polyps and regulation by glucocorticoid.
Yu WANG ; Zhijian YU ; Jun SHI ; Lan CHENG ; Kejun ZUO ; Guozhen MENG ; Weiping WEN ; Huabin LI
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2016;51(3):169-173
OBJECTIVETo evaluate the expression and possible modulation of heme oxygenase-1 (HO-1) in nasal polyps of patients with chronic rhinosinusitis with nasal polyps (CRSwNP).
METHODSNasal polyps and uncinate process tissues were collected from 25 CRSwNP patients and 19 healthy controls with nasal septal deviation. HO-1 expression was examined using qRT-PCR, immunohistochemistric staining and Western blot analysis. Moreover, additional uncinate process mucosal samples of 15 healthy controls with nasal septal deviation were harvested for nasal explant culture experiments. HO-1 expression was measured in cultured nasal explant in response to specific inflammatory and glucocorticoid stimulation. SPSS 20.0 software was used to analyze the data.
RESULTSThe mRNA and protein expression of HO-1 was significantly increased in polyp tissues, 1.220±0.397 in mRNA and 1.409±0.701 in protein, compared with healthy controls 0.464±0.318 in mRNA and 0.017±0.1147 in protein (U=22.00 in mRNA and U=1.00 in protein, both P< 0.05). The immunohistochemical results showed that HO-1 was mainly distributed in the epithelial layer, submucosal glands and inflammatory cells in nasal tissues. Nasal explant culture experiments demonstrated that HO-1 mRNA was upregulated by IL-17A. The HO-1 mRNA level before the stimulation was 1.000, and 17.264±4.275 after the stimulation of 1 ng/ml IL-17A (U=0, P<0.05), 19.128±4.605 after the stimulation of 10 ng/ml IL-17A (U=0, P<0.05), but was significantly suppressed after stimulation with glucocorticoids (dexamethasone, DEX). The mRNA level after the glucocorticoids stimulation was 0.370±0.101 (U=0, P<0.05) and 0.316±0.167 (U=0, P<0.05) respectively. Furthermore, the HO-1 mRNA was inhibited by TGF-β1, the mRNA level was 0.217±0.322 (U=0, P<0.05), 0.070±0.070 (U=0, P<0.05), respectively.
CONCLUSIONIncreased HO-1 expression may play a role in the pathogenesis of CRSwNP, which may be considered as the therapeutic target.
Blotting, Western ; Case-Control Studies ; Chronic Disease ; Dexamethasone ; pharmacology ; Glucocorticoids ; pharmacology ; Heme Oxygenase-1 ; metabolism ; Humans ; Interleukin-17 ; pharmacology ; Nasal Polyps ; complications ; metabolism ; RNA, Messenger ; metabolism ; Rhinitis ; complications ; metabolism ; Sinusitis ; complications ; metabolism ; Tissue Culture Techniques ; Transforming Growth Factor beta1 ; metabolism
7.Effects of glucocorticoid on RAGE-NF-κB pathway in hyperoxia-induced lung tissues of neonatal rats.
Jian HU ; Min YU ; Yun TANG ; Zhao-Fang TIAN
Chinese Journal of Contemporary Pediatrics 2015;17(1):81-85
OBJECTIVETo explore the change of RAGE-NF-κB signaling pathway during the course of hyperoxia-induced lung injury in newborn rats, and the effect of glucocorticoid on this pathway.
METHODSTwenty-four Sprague-Dawley neonatal rats were randomly divided into three groups (n=8 each) : sham control (control group), hyperoxia-induced acute lung injury (model group) and glucocorticoid-treated acute lung injury (glucocorticoid group). Rats were sacrificed at 13 days after birth. RAGE and NF-κB expression levels in lung tissues were detected by reverse transcription polymerase chain reaction, Western blot and immunohistochemistry analysis. The levels of tumor necrosis factor α (TNF-α) and sRAGE in bronchoalveolar lavage fluid (BALF) and serum were measured using ELISA. Lung damage was evaluated by histological examinations.
RESULTSRAGE and NF-κB mRNA and protein expression levels in lung tissues were significantly increased in the model and glucocorticoid groups compared with the control group (P<0.05). Serum RAGE concentrations were significantly increased but RAGE concentrations in BALF were significantly reduced in the model and glucocorticoid groups compared with the control group (P<0.05). RAGE and NF-κB expression at both mRNA and protein levels in lung tissues was significantly lower in the glucocorticoid group than in the model group (P<0.05). RAGE concentrations were significantly lower in serum (P<0.05), but were higher in BALF (P<0.05) in the glucocorticoid group than in the model group.
CONCLUSIONSRAGE-NF-κB pathway plays an important role in hyperoxia-induced lung injury in neonatal rats, and glucocorticoid administration may play a protective role against the lung injury by down-regulating RAGE-NF-κB signaling pathway.
Animals ; Animals, Newborn ; Glucocorticoids ; pharmacology ; Hyperoxia ; complications ; Lung Injury ; prevention & control ; NF-kappa B ; analysis ; genetics ; physiology ; Rats ; Rats, Sprague-Dawley ; Receptor for Advanced Glycation End Products ; Receptors, Immunologic ; analysis ; genetics ; physiology ; Signal Transduction ; drug effects ; Tumor Necrosis Factor-alpha ; analysis
8.Lipopolysaccharide, TNFα, IL-6, dexamethasone, and insulin increase the expression of GPR54 in the MCF7 breasr cancer cell line.
Bing-kun HUANG ; Jiang-feng MAO ; Zhao SUN ; Qin HAN ; Min NIE ; Xue-yan WU
National Journal of Andrology 2015;21(7):587-592
OBJECTIVETo investigate the effects of different concentrations of lipopolysaccharide (LPS), tumor necrosis factor α (TNFα), interleukin-6 (IL-6), dexamethasone (Dex), and insulin on the mRNA and protein expressions of GPR54 in the MCF7 cell line in vitro.
METHODSMCF7 breasr cancer cells were cultured and treated with different concentrations of LPS (10 and 20 µg/ml), TNFα (20 and 100 ng/ml), IL-6 (10 and 20 ng/ml), Dex (10(-6) and 10(-7) mol/L), and insulin (0.01 and 0.1 IU/L). Those treated with culture fluid only served as controls. The mRNA and protein expressions of GPR54 were measured by real-time PCR and Western blot, respectively, after 6, 24, 48, and 72 hours of treatment.
RESULTSCompared with the blank con- trol, LPS (10 and 20 µg/ml), TNFα (20 and 100 ng/ml), IL-6 (10 and 20 ng/ml), Dex (10(-6) and 10(-7) mol/L), and insulin (0.01 and 0.1 IU/L) significantly increased the expressions of GPR54 mRNA (P < 0.05) and protein (P < 0.05).
CONCLUSIONLPS, TNFα, IL-6, Dex, and insulin evidently increase the expression of GPR54 in the MCF7 cell line, indicating their influence on the function of gonads by regulating the GPR54 level.
Blotting, Western ; Dexamethasone ; administration & dosage ; pharmacology ; Glucocorticoids ; administration & dosage ; pharmacology ; Gonads ; drug effects ; metabolism ; Humans ; Hypoglycemic Agents ; administration & dosage ; pharmacology ; Insulin ; administration & dosage ; pharmacology ; Interleukin-6 ; administration & dosage ; pharmacology ; Lipopolysaccharides ; administration & dosage ; pharmacology ; MCF-7 Cells ; RNA, Messenger ; metabolism ; Real-Time Polymerase Chain Reaction ; Receptors, G-Protein-Coupled ; drug effects ; genetics ; metabolism ; Receptors, Kisspeptin-1 ; Time Factors ; Tumor Necrosis Factor-alpha ; administration & dosage ; pharmacology
9.Glucocorticoids Significantly Influence the Transcriptome of Bone Microvascular Endothelial Cells of Human Femoral Head.
Qing-Sheng YU ; Wan-Shou GUO ; Li-Ming CHENG ; Yu-Feng LU ; Jian-Ying SHEN ; Ping LI
Chinese Medical Journal 2015;128(14):1956-1963
BACKGROUNDAppropriate expression and regulation of the transcriptome, which mainly comprise of mRNAs and lncRNAs, are important for all biological and cellular processes including the physiological activities of bone microvascular endothelial cells (BMECs). Through an intricate intracellular signaling systems, the transcriptome regulates the pharmacological response of the cells. Although studies have elucidated the impact of glucocorticoids (GCs) cell-specific gene expression signatures, it remains necessary to comprehensively characterize the impact of lncRNAs to transcriptional changes.
METHODSBMECs were divided into two groups. One was treated with GCs and the other left untreated as a paired control. Differential expression was analyzed with GeneSpring software V12.0 (Agilent, Santa Clara, CA, USA) and hierarchical clustering was conducted using Cluster 3.0 software. The Gene Ontology (GO) analysis was performed with Molecular Annotation System provided by CapitalBio Corporation.
RESULTSOur results highlight the involvement of genes implicated in development, differentiation and apoptosis following GC stimulation. Elucidation of differential gene expression emphasizes the importance of regulatory gene networks induced by GCs. We identified 73 up-regulated and 166 down-regulated long noncoding RNAs, the expression of 107 of which significantly correlated with 172 mRNAs induced by hydrocortisone.
CONCLUSIONSTranscriptome analysis of BMECs from human samples was performed to identify specific gene networks induced by GCs. Our results identified complex RNA crosstalk underlying the pathogenesis of steroid-induced necrosis of femoral head.
Cells, Cultured ; Endothelial Cells ; drug effects ; metabolism ; Femur Head ; cytology ; Gene Expression Profiling ; Glucocorticoids ; pharmacology ; Humans ; Oligonucleotide Array Sequence Analysis ; Osteonecrosis ; genetics ; RNA, Messenger ; genetics ; RNA, Untranslated ; genetics ; Transcriptome ; drug effects ; genetics
10.Glucocorticoid receptor agonist dexamethasone attenuates renal ischemia/reperfusion injury by up-regulating eNOS/iNOS.
Jiong ZHANG ; Jun-hua LI ; Le WANG ; Min HAN ; Fang XIAO ; Xiao-qin LAN ; Yue-qiang LI ; Gang XU ; Ying YAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(4):516-520
The aim of this study was to determine the effect of dexamethasone (DEX) on renal ischemia/reperfusion injury (IRI). C57BL/6 mice were randomly divided into Sham group, IRI group and DEX group. The mice in IRI and DEX groups subjected to renal ischemia for 60 min, were treated with saline or DEX (4 mg/kg, i.p.) 60 min prior to I/R. After 24 h of reperfusion, the renal function, renal pathological changes, activation of extracellular signal-regulated kinase (ERK) and glucocorticoid receptor (GR), and the levels of iNOS and eNOS were detected. The results showed DEX significantly decreased the damage to renal function and pathological changes after renal IRI. Pre-treatment with DEX reduced ERK activation and down-regulated the level of iNOS, whereas up-regulated the level of eNOS after renal IRI. DEX could further promote the activation of GR. These findings indicated GR activation confers preconditioning-like protection against acute IRI partially by up-regulating the ratio of eNOS/iNOS.
Animals
;
Dexamethasone
;
pharmacology
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Glucocorticoids
;
pharmacology
;
Male
;
Mice
;
Nitric Oxide Synthase Type II
;
biosynthesis
;
Nitric Oxide Synthase Type III
;
biosynthesis
;
Receptors, Glucocorticoid
;
agonists
;
Reperfusion Injury
;
enzymology
;
pathology
;
Up-Regulation
;
drug effects

Result Analysis
Print
Save
E-mail