1.Divergent effects of lycopene on pancreatic alpha and beta cells.
Wei-Huang LIU ; Qiao-Na WANG ; Ying ZHOU ; Yan-Jun WANG ; Zan TONG
Acta Physiologica Sinica 2020;72(2):133-138
Lycopene is an antioxidant which has potential anti-diabetic activity, but the cellular mechanisms have not been clarified. In this study, different concentrations of lycopene were used to treat pancreatic alpha and beta cell lines, and the changes of cell growth, cell apoptosis, cell cycle, reactive oxygen species (ROS), ATP levels and expression of related cytokines were determined. The results exhibited that lycopene did not affect cell growth, cell apoptosis, cell cycle, ROS and ATP levels of alpha cells, while it promoted the growth of beta cells, increased the ratio of S phase, reduced the ROS levels and increased the ATP levels of beta cells. At the same time, lycopene treatment elevated the mRNA expression levels of tnfα, tgfβ and hif1α in beta cells. These findings suggest that lycopene plays cell-specific role and activates pancreatic beta cells, supporting its application in diabetes therapy.
Adenosine Triphosphate
;
metabolism
;
Apoptosis
;
Carotenoids
;
pharmacology
;
Cell Cycle
;
Cells, Cultured
;
Cytokines
;
metabolism
;
Glucagon-Secreting Cells
;
drug effects
;
Humans
;
Insulin-Secreting Cells
;
drug effects
;
Lycopene
;
pharmacology
;
Reactive Oxygen Species
;
metabolism
2.Efficacy of ranolazine in lowering HbA1c in patients with type 2 diabetes mellitus: A meta-analysis.
Everly Faith RAMOS ; Angelique Bea UY ; Aldrin B. LOYOLA
Philippine Journal of Internal Medicine 2017;55(3):1-8
INTRODUCTION: Cardiovascular diseases and diabetes mellitus (DM) are two disease entities that commonly coexist in a single patient. Ranolazine is an active piperazine derivative approved by FDA in 2006 as an anti-anginal medication. It was noted to have HbA1c lowering effects in the trials on angina. The proposed mechanism of action is the inhibition of glucagon secretion by blocking the Na v1.3 isoform of sodium channels in pancreatic alpha cells leading to glucagon- and glucose-lowering effects. HbA1c lowering to a target of 6.5% in type 2 diabetes patients has been shown to reduce risk of microvascular complications. The objective of this study is to determine the efficacy and safety of Ranolazine in HbA1c lowering as an add-on therapy to existing anti-diabetic regimen.
METHODS: A comprehensive literature search in PubMed, The Cochrane Central Register of Controlled Trials, the ClinicalTrials.gov website, Google Scholar databases and EMBASE databases were made using the search terms "Randomized controlled trial", "Ranolazine," "HbA1c," and "glycosylated hemoglobin", as well as various combinations of these, was done to identify randomized control trials. No restriction on language and time were done. The authors extracted data for characteristics, quality assessment and mean change in HbA1c after at least eight weeks of treatment with ranolazine. The program RevMan 5.3 was used to generate the statistical analysis of the data.
RESULTS: Six RCTs were included to make up a total of 1,650 diabetic patients. Five studies had moderate risk of bias assessment while one had low risk of bias assessment and hence was not included in the analysis. The overall analysis showed an HbA1c reduction of 0.35% 0.68 to -0.03, p-value=0.03) however, the population was heterogenous (I2=100%). The heterogeneity was not eliminated by sensitivity analysis.
DISCUSSION: The results showed a statistically significant lowering of HbA1c with ranolazine. However, the population was heterogenous. The sources of heterogeneity could be the (1) differences in the level of glycemic control among subjects as indicated by baseline HbA1c levels, (2) the current anti-diabetic regimen of the study patients, i.e. whether or not they are on insulin therapy, (3) the presence or absence of ischemic heart disease and (5) duration of ranolazine therapy, and (4) the presence or absence of chronic kidney disease. When the analysis excluded the population with combination insulin therapy and ranolazine, the effect becomes non-significant. Thus, the HbA1c lowering effect may have been from the insulin therapy rather than the ranolazine.
CONCLUSION: Ranolazine as anti-diabetic therapy shows statistically significant HbA1c lowering effect. It can be a potential treatment option for patients with both DM and angina pectoris. However, well-designed, prospective trials are still recommended to determine the effect on a less heterogenous population. Likewise, more studies are needed to determine its safety.
Human ; Hemoglobin A, Glycosylated ; Glucagon ; Glucagon-secreting Cells ; Diabetes Mellitus, Type 2 ; Ranolazine ; Insulin ; Language ; Prospective Studies ; Blood Glucose ; Angina Pectoris ; Coronary Artery Disease ; Myocardial Ischemia ; Renal Insufficiency, Chronic ; Pubmed ; Sodium Channels ; Protein Isoforms
3.Umbilical Cord Derived Mesenchymal Stem Cells Useful in Insulin Production - Another Opportunity in Cell Therapy.
Shabari SARANG ; Chandra VISWANATHAN
International Journal of Stem Cells 2016;9(1):60-69
BACKGROUND AND OBJECTIVES: Type 1 Diabetes Mellitus (T1DM) is an autoimmune disorder resulting out of T cell mediated destruction of pancreatic beta cells. Immunomodulatory properties of mesenchymal stem cells may help to regenerate beta cells and/or prevent further destruction of remnant, unaffected beta cells in diabetes. We have assessed the ability of umbilical cord derived MSCs (UCMSCs) to differentiate into functional islet cells in vitro. METHODS AND RESULTS: We have isolated UCMSCs and allowed sequential exposure of various inducing agents and growth factors. We characterized these cells for confirmation of the presence of islet cell markers and their functionality. The spindle shaped undifferentiated UCMSCs, change their morphology to become triangular in shape. These cells then come together to form the islet like structures which then grow in size and mature over time. These cells express pancreatic and duodenal homeobox -1 (PDX-1), neurogenin 3 (Ngn-3), glucose transporter 2 (Glut 2) and other pancreatic cell markers like glucagon, somatostatin and pancreatic polypeptide and lose expression of MSC markers like CD73 and CD105. They were functionally active as demonstrated by release of physiological insulin and C-peptide in response to elevated glucose concentrations. CONCLUSIONS: Pancreatic islet like cells with desired functionality can thus be obtained in reasonable numbers from undifferentiated UCMSCs in vitro. This could help in establishing a "very definitive source" of islet like cells for cell therapy. UCMSCs could thus be a game changer in treatment of diabetes.
C-Peptide
;
Cell- and Tissue-Based Therapy*
;
Diabetes Mellitus, Type 1
;
Genes, Homeobox
;
Glucagon
;
Glucose
;
Glucose Transport Proteins, Facilitative
;
Insulin*
;
Insulin-Secreting Cells
;
Intercellular Signaling Peptides and Proteins
;
Islets of Langerhans
;
Mesenchymal Stromal Cells*
;
Pancreatic Polypeptide
;
Somatostatin
;
Stem Cells
;
Umbilical Cord*
4.Pancreatic alpha-Cell Dysfunction in Type 2 Diabetes: Old Kids on the Block.
Diabetes & Metabolism Journal 2015;39(1):1-9
Type 2 diabetes (T2D) has been known as 'bi-hormonal disorder' since decades ago, the role of glucagon from alpha-cell has languished whereas beta-cell taking center stage. Recently, numerous findings indicate that the defects of glucagon secretion get involve with development and exacerbation of hyperglycemia in T2D. Aberrant alpha-cell responses exhibit both fasting and postprandial states: hyperglucagonemia contributes to fasting hyperglycemia caused by inappropriate hepatic glucose production, and to postprandial hyperglycemia owing to blunted alpha-cell suppression. During hypoglycemia, insufficient counter-regulation response is also observed in advanced T2D. Though many debates still remained for exact mechanisms behind the dysregulation of alpha-cell in T2D, it is clear that the blockade of glucagon receptor or suppression of glucagon secretion from alpha-cell would be novel therapeutic targets for control of hyperglycemia. Whereas there have not been remarkable advances in developing new class of drugs, currently available glucagon-like peptide-1 and dipeptidyl peptidase-IV inhibitors could be options for treatment of hyperglucagonemia. In this review, we focus on alpha-cell dysfunction and therapeutic potentials of targeting alpha-cell in T2D.
Diabetes Mellitus, Type 2
;
Fasting
;
Glucagon
;
Glucagon-Like Peptide 1
;
Glucagon-Secreting Cells
;
Glucose
;
Hyperglycemia
;
Hypoglycemia
;
Insulin
;
Insulin-Secreting Cells
;
Receptors, Glucagon
5.A Case of Alpha-cell Nesidioblastosis and Hyperplasia with Multiple Glucagon-producing Endocrine Cell Tumor of the Pancreas.
Huapyong KANG ; Sewha KIM ; Tae Seop LIM ; Hye Won LEE ; Heun CHOI ; Chang Moo KANG ; Ho Guen KIM ; Seungmin BANG
The Korean Journal of Gastroenterology 2014;63(4):253-257
Nesidioblastosis is a term used to describe pathologic overgrowth of pancreatic islet cells. It also means maldistribution of islet cells within the ductules of exocrine pancreas. Generally, nesidioblastosis occurs in beta-cell and causes neonatal hyperinsulinemic hypoglycemia or adult noninsulinoma pancreatogenous hypoglycemia syndrome. Alpha-cell nesidioblastosis and hyperplasia is an extremely rare disorder. It often accompanies glucagon-producing marco- and mircoadenoma without typical glucagonoma syndrome. A 35-year-old female was referred to our hospital with recurrent acute pancreatitis. On radiologic studies, 1.5 cm sized mass was noted in pancreas tail. Cytological evaluation with EUS-fine-needle aspiration suggested serous cystadenoma. She received distal pancreatectomy. The histologic examination revealed a 1.7 cm sized neuroendocrine tumor positive for immunohistochemical staining with glucagon antibody. Multiple glucagon-producing micro endocrine cell tumors were scattered next to the main tumor. Additionally, diffuse hyperplasia of pancreatic islets and ectopic proliferation of islet cells in centroacinar area, findings compatible to nesidioblastosis, were seen. These hyperplasia and almost all nesidioblastic cells were positive for glucagon immunochemistry. Even though serum glucagon level still remained higher than the reference value, she has been followed-up without any evidence of recurrence or hormone related symptoms. Herein, we report a case of alpha-cell nesidioblastosis and hyperplasia combined with glucagon-producing neuroendocrine tumor with literature review.
Adult
;
Chromogranin A/blood
;
Female
;
Glucagon/*metabolism
;
Glucagon-Secreting Cells/metabolism
;
Humans
;
Hyperplasia/complications/*diagnosis
;
Islets of Langerhans/metabolism/ultrasonography
;
Nesidioblastosis/complications/*diagnosis
;
Neuroendocrine Tumors/complications/*diagnosis/pathology
;
Pancreas/*pathology
;
Tomography, X-Ray Computed
6.Effect of the combination of metformin and fenofibrate on glucose homeostasis in diabetic Goto-Kakizaki rats.
Tae Jung OH ; Ji Yon SHIN ; Gyeong Hoon KANG ; Kyong Soo PARK ; Young Min CHO
Experimental & Molecular Medicine 2013;45(7):e30-
Metformin has been reported to increase the expression of the glucagon-like peptide-1 (GLP-1) receptor in pancreatic beta cells in a peroxisome proliferator-activated receptor (PPAR)-alpha-dependent manner. We investigated whether a PPARalpha agonist, fenofibrate, exhibits an additive or synergistic effect on glucose metabolism, independent of its lipid-lowering effect, when added to metformin. Non-obese diabetic Goto-Kakizaki (GK) rats were divided into four groups and treated for 28 days with metformin, fenofibrate, metformin plus fenofibrate or vehicle. The random blood glucose levels, body weights, food intake and serum lipid profiles were not significantly different among the groups. After 4 weeks, metformin, but not fenofibrate, markedly reduced the blood glucose levels during oral glucose tolerance tests, and this effect was attenuated by adding fenofibrate. Metformin increased the expression of the GLP-1 receptor in pancreatic islets, whereas fenofibrate did not. During the intraperitoneal glucose tolerance tests with the injection of a GLP-1 analog, metformin and/or fenofibrate did not alter the insulin secretory responses. In conclusion, fenofibrate did not confer any beneficial effect on glucose homeostasis but reduced metformin's glucose-lowering activity in GK rats, thus discouraging the addition of fenofibrate to metformin to improve glycemic control.
Animals
;
Blood Glucose/metabolism
;
Body Weight/drug effects
;
Diabetes Mellitus, Experimental/*drug therapy/*metabolism
;
Drug Therapy, Combination
;
Feeding Behavior/drug effects
;
Fenofibrate/*pharmacology/therapeutic use
;
Glucagon-Like Peptide 1/agonists/metabolism
;
Glucose/*metabolism
;
Glucose Tolerance Test
;
Homeostasis/*drug effects
;
Immunohistochemistry
;
Injections, Intraperitoneal
;
Insulin-Secreting Cells/drug effects/metabolism/pathology
;
Lipid Metabolism/drug effects
;
Male
;
Metformin/*pharmacology/therapeutic use
;
Peptides/administration & dosage/pharmacology
;
Rats
;
Receptors, Glucagon/metabolism
;
Venoms/administration & dosage/pharmacology
7.B-cell translocation gene 2 positively regulates GLP-1-stimulated insulin secretion via induction of PDX-1 in pancreatic beta-cells.
Seung Lark HWANG ; Okyun KWON ; Sun Gyun KIM ; In Kyu LEE ; Yong Deuk KIM
Experimental & Molecular Medicine 2013;45(5):e25-
Glucagon-like peptide-1 (GLP-1) is a potent glucoincretin hormone and an important agent for the treatment of type 2 diabetes. Here we demonstrate that B-cell translocation gene 2 (BTG2) is a crucial regulator in GLP-1-induced insulin gene expression and insulin secretion via upregulation of pancreatic duodenal homeobox-1 (PDX-1) in pancreatic beta-cells. GLP-1 treatment significantly increased BTG2, PDX-1 and insulin gene expression in pancreatic beta-cells. Notably, adenovirus-mediated overexpression of BTG2 significantly elevated insulin secretion, as well as insulin and PDX-1 gene expression. Physical interaction studies showed that BTG2 is associated with increased PDX-1 occupancy on the insulin gene promoter via a direct interaction with PDX-1. Exendin-4 (Ex-4), a GLP-1 agonist, and GLP-1 in pancreatic beta-cells increased insulin secretion through the BTG2-PDX-1-insulin pathway, which was blocked by endogenous BTG2 knockdown using a BTG2 small interfering RNA knockdown system. Finally, we revealed that Ex-4 and GLP-1 significantly elevated insulin secretion via upregulation of the BTG2-PDX-1 axis in pancreatic islets, and this phenomenon was abolished by endogenous BTG2 knockdown. Collectively, our current study provides a novel molecular mechanism by which GLP-1 positively regulates insulin gene expression via BTG2, suggesting that BTG2 has a key function in insulin secretion in pancreatic beta-cells.
Animals
;
Gene Expression Regulation/drug effects
;
Glucagon-Like Peptide 1/*pharmacology
;
Homeodomain Proteins/*genetics/metabolism
;
Humans
;
Immediate-Early Proteins/genetics/*metabolism
;
Insulin/genetics/*secretion
;
Insulin-Secreting Cells/drug effects/*metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Peptides/pharmacology
;
Promoter Regions, Genetic/genetics
;
Protein Binding/drug effects/genetics
;
Rats
;
Trans-Activators/*genetics/metabolism
;
Tumor Suppressor Proteins/genetics/*metabolism
;
Venoms/pharmacology
8.Pleiotropic Effects of an Incretin Hormone.
Journal of Korean Diabetes 2013;14(3):120-124
The incretin hormones glucagon like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) have recently received much attention for their roles in type 2 diabetes therapy. GLP-1 stimulated insulin secretion in a glucose-dependent manner and is secreted by intestinal L cells. It also regulates blood glucose concentration, stomach motility, appetite, and body weight. These actions are mediated through G-protein-coupled receptors highly expressed on pancreatic beta cells and also exert indirect metabolic actions. Activation of GLP-1 receptors also produces nonglycemic effects in various tissues. The pleiotropic effects of GLP-1 have been recently reported. The mechanisms identified in preclinical studies have potential translational relevance for the treatment of disease. Here, the nonglycemic effects of GLP-1, especially those on the liver, central nervous system, and bone, were reviewed.
Appetite
;
Blood Glucose
;
Body Weight
;
Central Nervous System
;
Enteroendocrine Cells
;
Glucagon
;
Glucagon-Like Peptide 1
;
Incretins
;
Insulin
;
Insulin-Secreting Cells
;
Liver
;
Receptors, G-Protein-Coupled
;
Stomach
9.Toll-like receptor 4 on islet beta cells senses expression changes in high-mobility group box 1 and contributes to the initiation of type 1 diabetes.
Min LI ; Lujun SONG ; Xiaodong GAO ; Wenju CHANG ; Xinyu QIN
Experimental & Molecular Medicine 2012;44(4):260-267
Type 1 diabetes mellitus is caused by the autoimmune destruction of beta cells within the islets. In recent years, innate immunity has been proposed to play a key role in this process. High-mobility group box 1 (HMGB1), an inflammatory trigger in a number of autoimmune diseases, activates proinflammatory responses following its release from necrotic cells. Our aim was to determine the significance of HMGB1 in the natural history of diabetes in non-obese diabetic (NOD) mice. We observed that the rate of HMGB1 expression in the cytoplasm of islets was much greater in diabetic mice compared with non-diabetic mice. The majority of cells positively stained for toll-like receptor 4 (TLR4) were beta cells; few alpha cells were stained for TLR4. Thus, we examined the effects of anti-TLR4 antibodies on HMGB1 cell surface binding, which confirmed that HMGB1 interacts with TLR4 in isolated islets. Expression changes in HMGB1 and TLR4 were detected throughout the course of diabetes. Our findings indicate that TLR4 is the main receptor on beta cells and that HMGB1 may signal via TLR4 to selectively damage beta cells rather than alpha cells during the development of type 1 diabetes mellitus.
Animals
;
Diabetes Mellitus, Type 1/immunology/*metabolism/pathology
;
Female
;
Gene Expression Regulation
;
Glucagon-Secreting Cells/immunology/metabolism/pathology
;
HMGB1 Protein/*genetics/metabolism
;
Humans
;
Immunity, Innate
;
Insulin-Secreting Cells/immunology/metabolism/*pathology
;
Macrophages/immunology/pathology
;
Mice
;
Mice, Inbred C57BL
;
Mice, Inbred NOD
;
Necrosis
;
Protein Binding
;
Signal Transduction
;
Toll-Like Receptor 4/*antagonists & inhibitors/genetics/immunology
10.MicroRNA-34a contributes to the protective effects of glucagon-like peptide-1 against lipotoxicity in INS-1 cells.
Yu-Bing HAN ; Min-Nan WANG ; Qiang LI ; Lin GUO ; Yu-Mei YANG ; Peng-Jie LI ; Wei WANG ; Jin-Chao ZHANG
Chinese Medical Journal 2012;125(23):4202-4208
BACKGROUNDGlucagon-like peptide-1 (GLP-1) reduces fatty acid-induced beta-cell lipotoxicity in diabetes; however, the explicit mechanisms underlying this process are not fully understood. This study was designed to investigate the involvement of microRNA, which regulates gene expression by the sequence-specific inhibition of mRNA transcription in the GLP-1 mediation of beta-cell function.
METHODSThe cell viability and apoptosis were determined using an methyl thiazoleterazolium (MTT) assay and flow cytometry. The expression of genes involved in beta-cell function, including microRNA-34a and sirtuin 1, were investigated using real-time PCR. The underlying mechanisms of microRNA-34a were further explored using cell-transfection assays.
RESULTSA 24-hours incubation of INS-1 cells with palmitate significantly decreased cell viability, increased cell apoptosis and led to the activation of microRNA-34a and the suppression of sirtuin 1. A co-incubation with GLP-1 protected the cells against palmitate-induced toxicity in association with a reduction in palmitate-induced activation of microRNA-34a. Furthermore, palmitate-induced apoptosis was significantly increased in cells that were infected with microRNA-34a mimics and decreased in cells that were infected with microRNA-34a inhibitors.
CONCLUSIONMicroRNA-34a is involved in the mechanism of GLP-1 on the modulation of beta-cell growth and survival.
Animals ; Apoptosis ; drug effects ; Cell Line ; Cell Survival ; drug effects ; Fatty Acids, Nonesterified ; toxicity ; Glucagon-Like Peptide 1 ; pharmacology ; Insulin-Secreting Cells ; cytology ; drug effects ; metabolism ; MicroRNAs ; genetics ; metabolism ; Palmitic Acid ; pharmacology ; Rats ; Real-Time Polymerase Chain Reaction


Result Analysis
Print
Save
E-mail