1.Effect of somatostatin on gastrointestinal hormone levels and clinical outcomes in critically ill infants after gastrointestinal surgery: a prospective randomized controlled study.
Bo-Xiang QI ; Zhi LIU ; Lei ZHU ; Li-Ping SHENG ; Shuang-Shuang HU ; Na-Na WEN ; Tong QIAN
Chinese Journal of Contemporary Pediatrics 2023;25(10):995-1000
OBJECTIVES:
To explore the effects of somatostatin on the levels of gastrointestinal hormones and clinical outcomes in critically ill infants after gastrointestinal surgery.
METHODS:
Using a random number table method, critically ill infants after gastrointestinal surgery who were admitted to the Intensive Care Unit of Xuzhou Children's Hospital from June 2019 to June 2021 were randomly divided into an observation group (29 cases) and a control group (30 cases). The control group received routine treatment such as anti-infection and hemostasis after surgery, while the observation group received somatostatin in addition to the routine treatment [3.5 μg/(kg·h) infusion for 7 days]. The levels of serum gastrin (GAS), motilin (MTL), insulin, and glucagon-like peptide-1 (GLP-1) before surgery, on the 3rd day after surgery, and on the 7th day after surgery were compared between the two groups. The recovery progress and incidence of complications after surgery were also compared between the two groups.
RESULTS:
There was no significant difference in the levels of serum GAS, MTL, insulin, and GLP-1 between the two groups before surgery (P>0.05). On the 3rd and 7th day after surgery, the levels of serum GAS, MTL, insulin, and GLP-1 in the observation group were higher than those in the control group (P<0.05). In the observation group, the levels of GAS, MTL, insulin, and GLP-1 on the 7th day after surgery were higher than those before surgery and on the 3rd day after surgery (P<0.05), and the levels on the 3rd day after surgery were higher than those before surgery (P<0.05). There was no significant difference in the levels of serum GAS, MTL, and insulin before surgery, on the 3rd day after surgery, and on the 7th day after surgery in the control group (P>0.05). The level of GLP-1 on the 7th day after surgery was higher than that before surgery and on the 3rd day after surgery (P<0.05), and the level on the 3rd day after surgery was higher than that before surgery (P<0.05) in the control group. The observation group had shorter first time of anal exhaust, recovery time of bowel sounds, and first time of defecation after surgery compared to the control group (P<0.05). The incidence of complications after surgery in the observation group was lower than that in the control group (10% vs 33%, P<0.05).
CONCLUSIONS
Somatostatin can increase the levels of serum GAS, MTL, insulin, and GLP-1 in critically ill infants after gastrointestinal surgery, promote the recovery of gastrointestinal function, and reduce the incidence of postoperative complications.
Humans
;
Infant
;
Critical Illness
;
Digestive System Surgical Procedures
;
Glucagon-Like Peptide 1
;
Insulin
;
Prospective Studies
;
Somatostatin/therapeutic use*
2.New practice in semaglutide on type-2 diabetes and obesity: clinical evidence and expectation.
Frontiers of Medicine 2022;16(1):17-24
Obesity is an important risk factor of type 2 diabetes (T2D), which has become an important factor threatening human health. However, no perfect drug choice for obesity exists. Semaglutide is a kind of human glucagon-like peptide-1 (GLP-1) analog that promotes insulin secretion while inhibiting glucagon secretion through a glucose concentration-dependent mechanism. GLP-1 can also delay stomach emptying and suppress appetite to help lose weight. This review summarizes clinical evidence of the semaglutide effect on T2D and obesity and establishes expectations on future clinical trials for obesity treatment.
Diabetes Mellitus, Type 2/drug therapy*
;
Glucagon-Like Peptide-1 Receptor/therapeutic use*
;
Glucagon-Like Peptides
;
Humans
;
Hypoglycemic Agents/therapeutic use*
;
Motivation
;
Obesity/drug therapy*
3.Effects of metabolic surgery on islet function in Asian patients with type 2 diabetes.
Yao Quan CAO ; Hai Bo TANG ; Shai Hong ZHU ; Li Yong ZHU
Chinese Journal of Gastrointestinal Surgery 2022;25(10):892-898
Type 2 diabetes is a high-profile global public health problem, particularly in Asia. The young age of onset, low body mass index, and early appearance of pancreatic islet dysfunction are characteristics of Asian patients with T2DM. Metabolic surgery has become the standard treatment for T2DM patients and can significantly improve T2DM through a variety of mechanisms including modulation of energy homeostasis and reduction of body fat mass. Indeed, restoration of islet function also plays an integral role in the remission of T2DM. After metabolic surgery, islet function in Asian T2DM patients has improved significantly, with proven short-term and long-term effects. In addition, islet function is an important criterion and reference for patient selection prior to metabolic surgery. The mechanism of islet function improvement after metabolic surgery is not clear, but postoperative anatomical changes in the gastrointestinal tract leading to a number of hormonal changes seem to be the potential cause, including glucagon-like peptide-1, gastric inhibitory polypeptide, peptide YY, ghrelin, and cholecystokinin. The authors analyzed the current retrospective and prospective studies on the effect of metabolic surgery on the islet function of Asian T2DM patients with a low BMI and its mechanism, summarized the clinical evidence that metabolic surgery improved islet function in Asian T2DM patients with a low BMI, and discussed its underlying mechanism. It is of great significance for realizing personalized and precise treatment of metabolic surgery and further improving its clinical benefits.
Bariatric Surgery
;
Body Mass Index
;
Cholecystokinin/therapeutic use*
;
Diabetes Mellitus, Type 2/surgery*
;
Gastric Inhibitory Polypeptide/therapeutic use*
;
Ghrelin/therapeutic use*
;
Glucagon-Like Peptide 1/therapeutic use*
;
Humans
;
Peptide YY/therapeutic use*
;
Prospective Studies
;
Retrospective Studies
;
Treatment Outcome
4.Xenopus GLP-1-based glycopeptides as dual glucagon-like peptide 1 receptor/glucagon receptor agonists with improved in vivo stability for treating diabetes and obesity.
Qiang LI ; Qimeng YANG ; Jing HAN ; Xiaohan LIU ; Junjie FU ; Jian YIN
Chinese Journal of Natural Medicines (English Ed.) 2022;20(11):863-872
Peptide dual agonists toward both glucagon-like peptide 1 receptor (GLP-1R) and glucagon receptor (GCGR) are emerging as novel therapeutics for the treatment of type 2 diabetes mellitus (T2DM) patients with obesity. Our previous work identified a Xenopus GLP-1-based dual GLP-1R/GCGR agonist termed xGLP/GCG-13, which showed decent hypoglycemic and body weight lowering activity. However, the clinical utility of xGLP/GCG-13 is limited due to its short in vivo half-life. Inspired by the fact that O-GlcNAcylation of intracellular proteins leads to increased stability of secreted proteins, we rationally designed a panel of O-GlcNAcylated xGLP/GCG-13 analogs as potential long-acting GLP-1R/ GCGR dual agonists. One of the synthesized glycopeptides 1f was found to be equipotent to xGLP/GCG-13 in cell-based receptor activation assays. As expected, O-GlcNAcylation effectively improved the stability of xGLP/GCG-13 in vivo. Importantly, chronic administration of 1f potently induced body weight loss and hypoglycemic effects, improved glucose tolerance, and normalized lipid metabolism and adiposity in both db/db and diet induced obesity (DIO) mice models. These results supported the hypothesis that glycosylation is a useful strategy for improving the in vivo stability of GLP-1-based peptides and promoted the development of dual GLP-1R/GCGR agonists as antidiabetic/antiobesity drugs.
Mice
;
Animals
;
Glucagon-Like Peptide 1/metabolism*
;
Receptors, Glucagon/therapeutic use*
;
Xenopus laevis/metabolism*
;
Diabetes Mellitus, Type 2/drug therapy*
;
Glycopeptides/therapeutic use*
;
Obesity/drug therapy*
;
Hypoglycemic Agents/pharmacology*
;
Peptides/pharmacology*
5.Improving Effect of the Acute Administration of Dietary Fiber-Enriched Cereals on Blood Glucose Levels and Gut Hormone Secretion.
Eun Ky KIM ; Tae Jung OH ; Lee Kyung KIM ; Young Min CHO
Journal of Korean Medical Science 2016;31(2):222-230
Dietary fiber improves hyperglycemia in patients with type 2 diabetes through its physicochemical properties and possible modulation of gut hormone secretion, such as glucagon-like peptide 1 (GLP-1). We assessed the effect of dietary fiber-enriched cereal flakes (DC) on postprandial hyperglycemia and gut hormone secretion in patients with type 2 diabetes. Thirteen participants ate isocaloric meals based on either DC or conventional cereal flakes (CC) in a crossover design. DC or CC was provided for dinner, night snack on day 1 and breakfast on day 2, followed by a high-fat lunch. On day 2, the levels of plasma glucose, GLP-1, glucose-dependent insulinotropic polypeptide (GIP), and insulin were measured. Compared to CC, DC intake exhibited a lower post-breakfast 2-hours glucose level (198.5±12.8 vs. 245.9±15.2 mg/dL, P<0.05) and a lower incremental peak of glucose from baseline (101.8±9.1 vs. 140.3±14.3 mg/dL, P<0.001). The incremental area under the curve (iAUC) of glucose after breakfast was lower with DC than with CC (P<0.001). However, there were no differences in the plasma insulin, glucagon, GLP-1, and GIP levels. In conclusion, acute administration of DC attenuates postprandial hyperglycemia without any significant change in the representative glucose-regulating hormones in patients with type 2 diabetes (ClinicalTrials.gov. NCT 01997281).
Adult
;
Aged
;
Area Under Curve
;
Blood Glucose/*analysis
;
Cross-Over Studies
;
Diabetes Mellitus, Type 2/complications/diagnosis/*diet therapy
;
Dietary Fiber/*therapeutic use
;
Female
;
Gastric Inhibitory Polypeptide/blood
;
Glucagon/blood
;
Glucagon-Like Peptide 1/*blood
;
Hemoglobin A, Glycosylated/analysis
;
Humans
;
Hyperglycemia/complications/diagnosis
;
Insulin/blood
;
Intestines/metabolism
;
Male
;
Middle Aged
;
ROC Curve
6.Review on the effect of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors for the treatment of non-alcoholic fatty liver disease.
Chao-Lin LI ; Lu-Jie ZHAO ; Xin-Li ZHOU ; Hui-Xiao WU ; Jia-Jun ZHAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(3):333-336
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease and it represents the hepatic manifestation of metabolic syndrome, which includes type 2 diabetes mellitus (T2DM), dyslipidemia, central obesity and hypertension. Glucagon-like peptide-1 (GLP-1) analogues and dipeptidyl peptidase-4 (DPP-4) inhibitors were widely used to treat T2DM. These agents improve glycemic control, promote weight loss and improve lipid metabolism. Recent studies have demonstrated that the GLP-1 receptor (GLP-1R) is present and functional in human and rat hepatocytes. In this review, we present data from animal researches and human clinical studies that showed GLP-1 analogues and DPP-4 inhibitors can decrease hepatic triglyceride (TG) content and improve hepatic steatosis, although some effects could be a result of improvements in metabolic parameters. Multiple hepatocyte signal transduction pathways and mRNA from key enzymes in fatty acid metabolism appear to be activated by GLP-1 and its analogues. Thus, the data support the need for more rigorous prospective clinical trials to further investigate the potential of incretin therapies to treat patients with NAFLD.
Animals
;
Clinical Trials as Topic
;
Dipeptidyl-Peptidase IV Inhibitors
;
pharmacology
;
therapeutic use
;
Glucagon-Like Peptide 1
;
agonists
;
Humans
;
Hypoglycemic Agents
;
pharmacology
;
therapeutic use
;
Lipid Metabolism
;
drug effects
;
Non-alcoholic Fatty Liver Disease
;
drug therapy
;
metabolism
;
Triglycerides
;
metabolism
7.Clinical observation on the combined therapy of sitagliptin with insulin for patients with brittle diabetes.
Na LUO ; Yan ZHU ; Zhenwen ZHANG ; Hui CHEN ; Yan WANG
Journal of Central South University(Medical Sciences) 2015;40(10):1089-1095
OBJECTIVE:
To observe the clinical efficacy of sitagliptin plus insulin on patients with brittle diabetes and to determine the effect of the combined therapy on glucagon secretion.
METHODS:
This randomized, double-blinded and placebo-controlled trial included 30 patients with brittle diabetes. Participants were randomly assigned (1:1) to receive the treatment of either sitagliptin plus insulin or placebo plus insulin for 12 weeks. The blood glucose, hemoglobin A1c, insulin dose, C-peptide, glucagon, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and other parameters were determined.
RESULTS:
After 12 weeks of treatment, blood glucose was controlled better by sitagliptin plus insulin (P<0.01). The patients had significantly lower glucose variability indices, lower daily insulin requirement and hemoglobin A1c in the group of sitagliptin plus insulin (P<0.01). After steamed bun test, past-meal GLP-1 levels at 30 min were higher (P<0.01) while GIP levels were lower (P<0.01), with glucagon suppression in the sitagliptin plus insulin group. No significant change was observed at any time point in placebo plus insulin group.
CONCLUSION
Sitagliptin significantly decreases blood glucose level and blood glucose fluctuation, which may contribute to the ability of sitagliptin in decreasing glucagon secretion.
Blood Glucose
;
analysis
;
C-Peptide
;
blood
;
Diabetes Mellitus, Type 1
;
drug therapy
;
Dipeptidyl-Peptidase IV Inhibitors
;
Double-Blind Method
;
Drug Therapy, Combination
;
Gastric Inhibitory Polypeptide
;
blood
;
Glucagon
;
blood
;
Glucagon-Like Peptide 1
;
blood
;
Glycated Hemoglobin A
;
analysis
;
Humans
;
Hypoglycemic Agents
;
administration & dosage
;
therapeutic use
;
Insulin
;
administration & dosage
;
therapeutic use
;
Sitagliptin Phosphate
;
administration & dosage
;
therapeutic use
8.Biological activity studies of the novel glucagon-like peptide-1 derivative HJ07.
Jing HAN ; Li-Dan SUN ; Hai QIAN ; Wen-Long HUANG
Chinese Journal of Natural Medicines (English Ed.) 2014;12(8):613-618
AIM:
To identify the glucose lowering ability and chronic treatment effects of a novel coumarin-glucagon-like peptide-1 (GLP-1) conjugate HJ07.
METHOD:
A receptor activation experiment was performed in HEK 293 cells and the glucose lowering ability was evaluated with hypoglycemic duration and glucose stabilizing tests. Chronic treatment was performed by daily injection of exendin-4, saline, and HJ07. Body weight and HbA1c were measured every week, and an intraperitoneal glucose tolerance test was performed before treatment and after treatment.
RESULTS:
HJ07 showed well-preserved receptor activation efficacy. The hypoglycemic duration test showed that HJ07 possessed a long-acting, glucose-lowering effect and the glucose stabilizing test showed that the antihyperglycemic activity of HJ07 was still evident at a predetermined time (12 h) prior to the glucose challenge (0 h). The long time glucose-lowering effect of HJ07 was better than native GLP-1 and exendin-4. Furthermore, once daily injection of HJ07 to db/db mice achieved long-term beneficial effects on HbA1c lowering and glucose tolerance.
CONCLUSION
The biological activity results of HJ07 suggest that HJ07 is a potential long-acting agent for the treatment of type 2 diabetes.
Animals
;
Blood Glucose
;
metabolism
;
Coumarins
;
pharmacology
;
Diabetes Mellitus
;
blood
;
drug therapy
;
Diabetes Mellitus, Type 2
;
drug therapy
;
Exenatide
;
Glucagon-Like Peptide 1
;
analogs & derivatives
;
pharmacology
;
therapeutic use
;
Glucagon-Like Peptide-1 Receptor
;
Glucose Tolerance Test
;
Glycated Hemoglobin A
;
metabolism
;
HEK293 Cells
;
Humans
;
Hypoglycemic Agents
;
pharmacology
;
therapeutic use
;
Male
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Peptides
;
pharmacology
;
Receptors, Glucagon
;
metabolism
;
Venoms
;
pharmacology
9.Effect of the combination of metformin and fenofibrate on glucose homeostasis in diabetic Goto-Kakizaki rats.
Tae Jung OH ; Ji Yon SHIN ; Gyeong Hoon KANG ; Kyong Soo PARK ; Young Min CHO
Experimental & Molecular Medicine 2013;45(7):e30-
Metformin has been reported to increase the expression of the glucagon-like peptide-1 (GLP-1) receptor in pancreatic beta cells in a peroxisome proliferator-activated receptor (PPAR)-alpha-dependent manner. We investigated whether a PPARalpha agonist, fenofibrate, exhibits an additive or synergistic effect on glucose metabolism, independent of its lipid-lowering effect, when added to metformin. Non-obese diabetic Goto-Kakizaki (GK) rats were divided into four groups and treated for 28 days with metformin, fenofibrate, metformin plus fenofibrate or vehicle. The random blood glucose levels, body weights, food intake and serum lipid profiles were not significantly different among the groups. After 4 weeks, metformin, but not fenofibrate, markedly reduced the blood glucose levels during oral glucose tolerance tests, and this effect was attenuated by adding fenofibrate. Metformin increased the expression of the GLP-1 receptor in pancreatic islets, whereas fenofibrate did not. During the intraperitoneal glucose tolerance tests with the injection of a GLP-1 analog, metformin and/or fenofibrate did not alter the insulin secretory responses. In conclusion, fenofibrate did not confer any beneficial effect on glucose homeostasis but reduced metformin's glucose-lowering activity in GK rats, thus discouraging the addition of fenofibrate to metformin to improve glycemic control.
Animals
;
Blood Glucose/metabolism
;
Body Weight/drug effects
;
Diabetes Mellitus, Experimental/*drug therapy/*metabolism
;
Drug Therapy, Combination
;
Feeding Behavior/drug effects
;
Fenofibrate/*pharmacology/therapeutic use
;
Glucagon-Like Peptide 1/agonists/metabolism
;
Glucose/*metabolism
;
Glucose Tolerance Test
;
Homeostasis/*drug effects
;
Immunohistochemistry
;
Injections, Intraperitoneal
;
Insulin-Secreting Cells/drug effects/metabolism/pathology
;
Lipid Metabolism/drug effects
;
Male
;
Metformin/*pharmacology/therapeutic use
;
Peptides/administration & dosage/pharmacology
;
Rats
;
Receptors, Glucagon/metabolism
;
Venoms/administration & dosage/pharmacology
10.Anti-obesity drugs: status quo and recent advances.
Acta Academiae Medicinae Sinicae 2011;33(3):243-247
Obesity has become a major health problem worldwide. The prevalence and morbidity of obesity-related diseases including diabetes, hypertension, cerebro-cardiovascular diseases, and tumors also have remarkably increased. Treatment of obesity poses a challenge for clinicians. Anti-obesity treatment is helpful to improve and even reverse obesity-related complications. Diet control and physical exercises remain the predominant interventions for obese patients. Anti-obesity drugs can be considered in those who respond poorly to behavioral intervention or those who have developed obesity-related complications. The commonly used anti-obesity drugs include gastrointestinal lipase inhibitors and appetite suppressants. Glucagon-like peptide 1 has also been found to be effective in reducing body weight. Some more drugs are under development, which include selective 5-HT 2c agonist, β3 receptor agonist, and melanocortin receptor 4 agonist, may also be promising.
Anti-Obesity Agents
;
therapeutic use
;
Appetite Depressants
;
therapeutic use
;
Glucagon-Like Peptide 1
;
therapeutic use
;
Humans
;
Obesity
;
drug therapy

Result Analysis
Print
Save
E-mail