1.Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma.
Lin ZHANG ; Yuanyuan CAO ; Xiaoxiao GUO ; Xiaoyu WANG ; Xiao HAN ; Kouminin KANWORE ; Xiaoliang HONG ; Han ZHOU ; Dianshuai GAO
Journal of Zhejiang University. Science. B 2023;24(1):32-49
Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.
Humans
;
Cell Hypoxia
;
Cell Line, Tumor
;
Glioblastoma/pathology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Plasminogen Activator Inhibitor 1/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Tumor Microenvironment
;
Brain Neoplasms/pathology*
2.Resolving the lineage relationship between malignant cells and vascular cells in glioblastomas.
Fangyu WANG ; Xuan LIU ; Shaowen LI ; Chen ZHAO ; Yumei SUN ; Kuan TIAN ; Junbao WANG ; Wei LI ; Lichao XU ; Jing JING ; Juan WANG ; Sylvia M EVANS ; Zhiqiang LI ; Ying LIU ; Yan ZHOU
Protein & Cell 2023;14(2):105-122
Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Lineage-tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, evidence of trans-differentiation of GBM cells into vascular cells was barely detected. Intriguingly, GBM cells could promiscuously express markers for mural cells during gliomagenesis. Furthermore, single-cell RNA sequencing showed that patterns of copy number variations (CNVs) of mural cells and ECs were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Importantly, single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages. Rather than expansion owing to trans-differentiation, vascular cell expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.
Mice
;
Animals
;
Humans
;
Glioblastoma/pathology*
;
Endothelial Cells/pathology*
;
DNA Copy Number Variations
;
Brain/metabolism*
;
Brain Neoplasms/pathology*
3.Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation.
Ashraf DUZAN ; Desiree REINKEN ; Timothy L MCGOMERY ; Nicholas M FERENCZ ; Jacob M PLUMMER ; Mufeed M BASTI
Journal of Integrative Medicine 2023;21(2):120-129
Globally, it is evident that glioblastoma multiforme (GBM) is an aggressive malignant cancer with a high mortality rate and no effective treatment options. Glioblastoma is classified as the stage-four progression of a glioma tumor, and its diagnosis results in a shortened life expectancy. Treatment options for GBM include chemotherapy, immunotherapy, surgical intervention, and conventional pharmacotherapy; however, at best, they extend the patient's life by a maximum of 5 years. GBMs are considered incurable due to their high recurrence rate, despite various aggressive therapeutic approaches which can have many serious adverse effects. Ceramides, classified as endocannabinoids, offer a promising novel therapeutic approach for GBM. Endocannabinoids may enhance the apoptosis of GBM cells but have no effect on normal healthy neural cells. Cannabinoids promote atypical protein kinase C, deactivate fatty acid amide hydrolase enzymes, and activate transient receptor potential vanilloid 1 (TRPV1) and TRPV2 to induce pro-apoptotic signaling pathways without increasing endogenous cannabinoids. In previous in vivo studies, endocannabinoids, chemically classified as amide formations of oleic and palmitic acids, have been shown to increase the pro-apoptotic activity of human cancer cells and inhibit cell migration and angiogenesis. This review focuses on the biological synthesis and pharmacology of endogenous cannabinoids for the enhancement of cancer cell apoptosis, which have potential as a novel therapy for GBM. Please cite this article as: Duzan A, Reinken D, McGomery TL, Ferencz N, Plummer JM, Basti MM. Endocannabinoids are potential inhibitors of glioblastoma multiforme proliferation. J Integr Med. 2023; 21(2): 120-128.
Humans
;
Glioblastoma/pathology*
;
Endocannabinoids/therapeutic use*
;
Brain Neoplasms/pathology*
;
Cell Proliferation
;
Cell Line, Tumor
;
Cannabinoids/therapeutic use*
4.Single-cell transcriptome analysis of multigrade glioma heterogeneity and immune microenvironment revealed potential prognostic biomarkers.
Jie LIU ; Kailong XU ; Lixin MA ; Yang WANG
Chinese Journal of Biotechnology 2022;38(10):3790-3808
Glioma, the most common intrinsic tumor of the central nervous system, is characterized by its high incidence and poor prognosis. The aim of this study was to identify differentially expressed genes (DEGs) between glioblastoma multiforme (GBM) and low-grade glioma (LGG) to explore prognostic factors of different grades of gliomas. Single-cell transcriptome sequencing data of gliomas were collected from the NCBI Gene Expression Omnibus (GEO), which included a total of 29 097 cell samples from three datasets. For the analysis of human gliomas of different grades, 21 071 cells were obtained by filtering, and 70 genes were screened from differentially expressed genes by gene ontology (GO) analysis, Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, from which the gene DLL3 was focused by reviewing the literature. The TCGA-based gene expression profiling interactive analysis (GEPIA) database was used to explore the survival curves of genes in LGG and GBM, and the gene expression profiling interactive analysis and tumor immune estimation resource (TIMER) database was used to study the expression of key genes in gliomas of different grades, predicting biomarkers that were closely related to immunotherapy. The cBioPortal database was used to explore the relationship between DLL3 expression and 25 immune checkpoints. Gene set enrichment analysis (GSEA) further identified pathways associated with central genes. Finally, the efficacy of biomarkers in prognosis and prediction was validated in the Chinese glioma genome atlas (CGGA). These results demonstrated that prognostic genes are associated with tumor proliferation and progression. Analysis of biological information and survival suggested that these genes might serve as a promising prognostic biomarker and as new targets for selecting therapeutic strategies.
Humans
;
Biomarkers
;
Brain Neoplasms/pathology*
;
Gene Expression Profiling/methods*
;
Glioblastoma/pathology*
;
Glioma/pathology*
;
Intracellular Signaling Peptides and Proteins
;
Membrane Proteins/genetics*
;
Prognosis
;
Transcriptome
;
Tumor Microenvironment/genetics*
;
Biomarkers, Tumor
5.Hypofractionated Re-irradiation after Maximal Surgical Resection for Recurrent Glioblastoma: Therapeutic Adequacy and Its Prognosticators of Survival.
Jeongshim LEE ; Sung Soo AHN ; Jong Hee CHANG ; Chang Ok SUH
Yonsei Medical Journal 2018;59(2):194-201
PURPOSE: To evaluate the adequacy of retreatment, including hypofractionated re-irradiation (HFReRT), after surgery for recurrent glioblastoma (GBM) and related prognosticators of outcomes. MATERIALS AND METHODS: From 2011 to 2014, 25 consecutive patients with recurrent (n=17) or secondary (n=7) disease underwent maximal surgery and subsequent HFReRT after meeting the following conditions: 1) confirmation of recurrent or secondary GBM after salvage surgery; 2) Karnofsky performance score (KPS) ≥60; and 3) interval of ≥12 months between initial radiotherapy and HFReRT. HFReRT was delivered using a simultaneous integrated boost technique, with total dose of 45 Gy in 15 fractions to the gross tumor volume (GTV) and 37.5 Gy in 15 fractions to the clinical target volume. RESULTS: During a median follow-up of 13 months, the median progression-free and overall survival (OS) were 13 and 16 months, respectively. A better KPS (p=0.026), no involvement of the eloquent area at recurrence (p=0.030), and a smaller GTV (p=0.005) were associated with better OS. Additionally, OS differed significantly between risk groups stratified by the National Institutes of Health Recurrent GBM Scale (low-risk vs. high-risk, p=0.025). Radiologically suspected radiation necrosis (RN) was observed in 16 patients (64%) at a median of 9 months after HFReRT, and 8 patients developed grade 3 RN requiring hospitalization. CONCLUSION: HFReRT after maximal surgery prolonged survival in selected patients with recurrent GBM, especially those with small-sized recurrences in non-eloquent areas and good performance.
Adult
;
Brain Neoplasms/mortality/pathology/*therapy
;
Dose Hypofractionation
;
Female
;
Glioblastoma/mortality/pathology/*therapy
;
Humans
;
Karnofsky Performance Status
;
Male
;
Middle Aged
;
Neoplasm Recurrence, Local/mortality/pathology/*therapy
;
Prognosis
;
*Radiosurgery
;
Re-Irradiation/*methods
;
Salvage Therapy/methods
;
Survival Rate
;
Treatment Outcome
6.Automatic disease stage classification of glioblastoma multiforme histopathological images using deep convolutional neural network.
Asami YONEKURA ; Hiroharu KAWANAKA ; V B SURYA PRASATH ; Bruce J ARONOW ; Haruhiko TAKASE
Biomedical Engineering Letters 2018;8(3):321-327
In the field of computational histopathology, computer-assisted diagnosis systems are important in obtaining patient-specific diagnosis for various diseases and help precision medicine. Therefore, many studies on automatic analysis methods for digital pathology images have been reported. In this work, we discuss an automatic feature extraction and disease stage classification method for glioblastoma multiforme (GBM) histopathological images. In this paper, we use deep convolutional neural networks (Deep CNNs) to acquire feature descriptors and a classification scheme simultaneously. Further, comparisons with other popular CNNs objectively as well as quantitatively in this challenging classification problem is undertaken. The experiments using Glioma images from The Cancer Genome Atlas shows that we obtain 96:5% average classification accuracy for our network and for higher cross validation folds other networks perform similarly with a higher accuracy of 98:0%. Deep CNNs could extract significant features from the GBM histopathology images with high accuracy. Overall, the disease stage classification of GBM from histopathological images with deep CNNs is very promising and with the availability of large scale histopathological image data the deep CNNs are well suited in tackling this challenging problem.
Classification*
;
Diagnosis
;
Diagnosis, Computer-Assisted
;
Genome
;
Glioblastoma*
;
Glioma
;
Methods
;
Pathology
;
Precision Medicine
;
Subject Headings
7.Reclassification of Mixed Oligoastrocytic Tumors Using a Genetically Integrated Diagnostic Approach
Seong Ik KIM ; Yujin LEE ; Jae Kyung WON ; Chul Kee PARK ; Seung Hong CHOI ; Sung Hye PARK
Journal of Pathology and Translational Medicine 2018;52(1):28-36
BACKGROUND: Mixed gliomas, such as oligoastrocytomas (OA), anaplastic oligoastrocytomas, and glioblastomas (GBMs) with an oligodendroglial component (GBMO) are defined as tumors composed of a mixture of two distinct neoplastic cell types, astrocytic and oligodendroglial. Recently, mutations ATRX and TP53, and codeletion of 1p/19q are shown to be genetic hallmarks of astrocytic and oligodendroglial tumors, respectively. Subsequent molecular analyses of mixed gliomas preferred the reclassification to either oligodendroglioma or astrocytoma. This study was designed to apply genetically integrated diagnostic criteria to mixed gliomas and determine usefulness and prognostic value of new classification in Korean patients. METHODS: Fifty-eight cases of mixed OAs and GBMOs were retrieved from the pathology archives of Seoul National University Hospital from 2004 to 2015. Reclassification was performed according to genetic and immunohistochemical properties. Clinicopathological characteristics of each subgroup were evaluated. Overall survival was assessed and compared between subgroups. RESULTS: We could reclassify all mixed OAs and GBMOs into either astrocytic or oligodendroglial tumors. Notably, 29 GBMOs could be reclassified into 11 cases of GBM, IDH-mutant, 16 cases of GBM, IDH-wildtype, and two cases of anaplastic oligodendroglioma, IDH mutant. Overall survival was significantly different among these new groups (p<.001). Overall survival and progression-free survival were statistically better in gliomas with IDH mutation, ATRX mutation, no microscopic necrosis, and young patient age (cut off, 45 years old). CONCLUSIONS: Our results strongly suggest that a genetically integrated diagnosis of glioma better reflects prognosis than former morphology-based methods.
Astrocytoma
;
Classification
;
Diagnosis
;
Disease-Free Survival
;
Genetics
;
Glioblastoma
;
Glioma
;
Humans
;
Necrosis
;
Oligodendroglioma
;
Pathology
;
Prognosis
;
Seoul
8.Artesunate inhibits proliferation of glioblastoma cells by arresting cell cycle.
Xiong WENG ; Shun-Qin ZHU ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2018;43(4):772-778
Glioblastoma is a common brain tumor and the overall survival rate of the patients is very low, so it is an effective way to develop the potential chemotherapy or adjuvant chemotherapy drugs in glioblastoma treatment. As a well-known antimalarial drug, artesunate(ARTs) has clear side effects, and recently it has been reported to have antitumor effects, but rarely reported in glioblastoma. Different concentrations of ARTs were used to treat the glioblastoma cells, and then the inhibitory effect of ARTs on glioblastoma proliferation was detected by MTT assay; Ki67 immunofluorescence assay was used to detect the proliferation of cells; Soft agar experiment was used to explain the clonal formation abilities ; Flow Cytometry was used to detect the cell cycle; and Western blot assay was used to determine the expression of key cell cycle protein. MTT assay results indicated that ARTs-treated glioblastoma cell A172, U251, U87 were significantly inhibited in a time-and-dose dependent manner as compared to the control group(DMSO treatment group). Soft agar experiment showed that ARTs could significantly reduce the clonal formation ability of glioblastoma. Furthermore, Flow cytometry analysis showed that ARTs could obviously increase the cell proportion in G₀/G₁ phase and reduce the cell proportion in S phase. Western blot results showed that the expressions of cell cycle-related proteins CDK2, CDK4, cyclin D1 and cyclin B1 were all obviously down-regulated. Above all, ARTs may inhibit the proliferation of glioblastoma cells by arresting cell cycle in G₀/G₁ phase through down-regulating the expression of CDK2, CDK4, cyclin D1, cyclin B1. These results may not only provide a novel method for rediscovering and reusing ARTs but also provide a new potential drug for treating glioblastoma.
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
Artesunate
;
pharmacology
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line, Tumor
;
Cell Proliferation
;
drug effects
;
Cyclin B1
;
metabolism
;
Cyclin D1
;
metabolism
;
Cyclin-Dependent Kinase 2
;
metabolism
;
Cyclin-Dependent Kinase 4
;
metabolism
;
Glioblastoma
;
drug therapy
;
pathology
;
Humans
9.Efficacy of Gamma Knife Radiosurgery for Recurrent High-Grade Gliomas with Limited Tumor Volume
Young Jun CHEON ; Tae Young JUNG ; Shin JUNG ; In Young KIM ; Kyung Sub MOON ; Sa Hoe LIM
Journal of Korean Neurosurgical Society 2018;61(4):516-524
OBJECTIVE: This study aims to determine whether gamma knife radiosurgery (GKR) improves survival in patients with recurrent highgrade gliomas.METHODS: Twenty nine patients with recurrent high-grade glioma underwent 38 GKR. The male-to-female ratio was 10 : 19, and the median age was 53.8 years (range, 20–75). GKR was performed in 11 cases of recurrent anaplastic oligodendrogliomas, five anaplastic astrocytomas, and 22 glioblastomas. The median prescription dose was 16 Gy (range, 10–24), and the median target volume was 7.0 mL (range, 1.1–15.7). Of the 29 patients, 13 (44.8%) received concurrent chemotherapy. We retrospectively analyzed the progression-free survival (PFS) and overall survival (OS) after GKR depending on the Eastern Cooperative Oncology Group (ECOG) performance status (PS), pathology, concurrent chemotherapy, radiation dose, and target tumor volume.RESULTS: Starting from when the patients underwent GKR, the median PFS and OS were 5.0 months (range, 1.1–28.1) and 13.0 months (range, 1.1–75.1), respectively. On univariate analysis, the median PFS was significantly long in patients with anaplastic oligodendroglioma, ECOG PS 1, and target tumor volume less than 10 mL (p < 0.05). Meanwhile, on multivariate analysis, patients with ECOG PS 1 and target tumor volume less than 10 mL showed improved PFS (p=0.043 and p=0.007, respectively). The median OS was significantly increased in patients with ECOG PS 1 and tumor volume less than 10 mL on univariate and multivariate analyses (p < 0.05).CONCLUSION: GKR could be an additional treatment option in recurrent high-grade glioma, particularly in patients with good PS and limited tumor volume.
Astrocytoma
;
Disease-Free Survival
;
Drug Therapy
;
Glioblastoma
;
Glioma
;
Humans
;
Multivariate Analysis
;
Oligodendroglioma
;
Pathology
;
Prescriptions
;
Radiosurgery
;
Recurrence
;
Retrospective Studies
;
Tumor Burden
10.Genomic and Molecular Characterization of Brain Tumors in Asian and Non-Asian Patients of Los Angeles: A Single Institution Analysis.
Courtney DUONG ; Thien NGUYEN ; John P SHEPPARD ; Vera ONG ; Lawrance K CHUNG ; Daniel T NAGASAWA ; Isaac YANG
Brain Tumor Research and Treatment 2017;5(2):64-69
BACKGROUND: Worldwide, approximately 2% of new cancers are of the brain. Five-year survival rates among brain cancer patients have been reported as a little over a third. Differences in clinical outcomes between brain tumor patients of different races remain poorly understood. METHODS: A retrospective chart review was performed on brain tumor resection patients≥18 years old. Demographics, treatment variables, and survival outcomes were collected. Primary outcomes were length of stay, recurrence rate, progression-free survival (PFS), and overall survival (OS). RESULTS: A total of 452 patients were included in analysis. Females and males had nearly a 1:1 ratio (n=242 and n=220, respectively). Mean age was 54.8 years (SD: 14.5 range: 18–90). Females composed 69% (n=48) of Asian patients; males constituted 31% (n=22). Mean age of the Asian patients was 55.9 years (SD: 14.6 range: 26–89). Asian-only cohort tumor pathologies included glioblastoma (GBM) (n=14), high-grade glioma (n=7), low-grade glioma (n=4), meningioma (n=38), and metastases (n=7). Of the 185 meningioma patients, non-Asian patients comprised 79% of the group (n=146). Of the 65 GBM patients in total, non-Asian patients made up 89% of the GBM cohort (n=58). There were no statistically significant differences between these groups of both cohorts in recurrence (p=0.1580 and p=0.6294, respectively), PFS (p=0.9662 and p=0.4048, respectively), or OS (p=0.3711 and p=0.8183, respectively). CONCLUSION: Studies evaluating the survival between patients of different racial backgrounds against several tumor varieties are rare. Patients of certain racial backgrounds may need additional consideration when being attended to despite the same mutational composition as their counterparts. Repeated studies using national databases may yield more conclusive results.
Asian Continental Ancestry Group*
;
Biomarkers
;
Brain Neoplasms*
;
Brain*
;
Cohort Studies
;
Continental Population Groups
;
Demography
;
Disease-Free Survival
;
Female
;
Glioblastoma
;
Glioma
;
Humans
;
Length of Stay
;
Male
;
Meningioma
;
Neoplasm Metastasis
;
Pathology
;
Recurrence
;
Retrospective Studies
;
Survival Rate

Result Analysis
Print
Save
E-mail