1.Construction and functional analysis of EGFRvIII CAR-T cells co-expressing IL-15 and CCL19.
Wanqiong CHEN ; Na XIAN ; Shaomei LIN ; Wanting LIAO ; Mingzhu CHEN
Chinese Journal of Biotechnology 2023;39(9):3787-3799
The aim of this study was to investigate the functional characteristics and in vitro specific killing effect of EGFRvIII CAR-T cells co-expressing interleukin-15 and chemokine CCL19, in order to optimize the multiple functions of CAR-T cells and improve the therapeutic effect of CAR-T cells targeting EGFRvIII on glioblastoma (GBM). The recombinant lentivirus plasmid was obtained by genetic engineering, transfected into 293T cells to obtain lentivirus and infected T cells to obtain the fourth generation CAR-T cells targeting EGFRvIII (EGFRvIII-IL-15-CCL19 CAR-T). The expression rate of CAR molecules, proliferation, chemotactic ability, in vitro specific killing ability and anti-apoptotic ability of the fourth and second generation CAR-T cells (EGFRvIII CAR-T) were detected by flow cytometry, cell counter, chemotaxis chamber and apoptosis kit. The results showed that compared with EGFRvIII CAR-T cells, EGFRvIII-IL-15-CCL19 CAR-T cells successfully secreted IL-15 and CCL19, and had stronger proliferation, chemotactic ability and anti-apoptosis ability in vitro (all P < 0.05), while there was no significant difference in killing ability in vitro. Therefore, CAR-T cells targeting EGFRvIII and secreting IL-15 and CCL19 are expected to improve the therapeutic effect of glioblastoma and provide an experimental basis for clinical trials.
Humans
;
Receptors, Chimeric Antigen/metabolism*
;
Glioblastoma/metabolism*
;
Interleukin-15/metabolism*
;
Chemokine CCL19/metabolism*
;
Cell Line, Tumor
;
T-Lymphocytes/metabolism*
2.FOXO1-miR-506 axis promotes chemosensitivity to temozolomide and suppresses invasiveness in glioblastoma through a feedback loop of FOXO1/miR-506/ETS1/FOXO1.
Chao CHEN ; Yu'e LIU ; Hongxiang WANG ; Xu ZHANG ; Yufeng SHI ; Juxiang CHEN
Journal of Zhejiang University. Science. B 2023;24(8):698-710
To explore the role of forkhead box protein O1 (FOXO1) in the progression of glioblastoma multiforme (GBM) and related drug resistance, we deciphered the roles of FOXO1 and miR-506 in proliferation, apoptosis, migration, invasion, autophagy, and temozolomide (TMZ) sensitivity in the U251 cell line using in vitro and in vivo experiments. Cell viability was tested by a cell counting kit-8 (CCK8) kit; migration and invasion were checked by the scratching assay; apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and flow cytometry. The construction of plasmids and dual-luciferase reporter experiment were carried out to find the interaction site between FOXO1 and miR-506. Immunohistochemistry was done to check the protein level in tumors after the in vivo experiment. We found that the FOXO1-miR-506 axis suppresses GBM cell invasion and migration and promotes GBM chemosensitivity to TMZ, which was mediated by autophagy. FOXO1 upregulates miR-506 by binding to its promoter to enhance transcriptional activation. MiR-506 could downregulate E26 transformation-specific 1 (ETS1) expression by targeting its 3'-untranslated region (UTR). Interestingly, ETS1 promoted FOXO1 translocation from the nucleus to the cytosol and further suppressed the FOXO1-miR-506 axis in GBM cells. Consistently, both miR-506 inhibition and ETS1 overexpression could rescue FOXO1 overactivation-mediated TMZ chemosensitivity in mouse models. Our study demonstrated a negative feedback loop of FOXO1/miR-506/ETS1/FOXO1 in GBM in regulating invasiveness and chemosensitivity. Thus, the above axis might be a promising therapeutic target for GBM.
Animals
;
Mice
;
Brain Neoplasms/genetics*
;
Cell Line, Tumor
;
Cell Proliferation
;
Drug Resistance, Neoplasm
;
Feedback
;
Gene Expression Regulation, Neoplastic
;
Glioblastoma/metabolism*
;
MicroRNAs/metabolism*
;
Temozolomide/therapeutic use*
;
Humans
;
Forkhead Box Protein O1/metabolism*
3.Leucine-rich repeats containing 4 protein (LRRC4) in memory, psychoneurosis, and glioblastoma.
Chinese Medical Journal 2023;136(1):4-12
Leucine-rich repeats containing 4 ( LRRC4 , also named netrin-G ligand 2 [NGL-2]) is a member of the NetrinGs ligands (NGLs) family. As a gene with relatively high and specific expression in brain, it is a member of the leucine-rich repeat superfamily and has been proven to be a suppressor gene for gliomas, thus being involved in gliomagenesis. LRRC4 is the core of microRNA-dependent multi-phase regulatory loops that inhibit the proliferation and invasion of glioblastoma (GB) cells, including LRRC4/NGL2-activator protein 2 (AP2)-microRNA (miR) 182-LRRC4 and LRRC4-miR185-DNA methyltransferase 1 (DNMT1)-LRRC4/specific protein 1 (SP1)-DNMT1-LRRC4. In this review, we demonstrated LRRC4 as a new member of the partitioning-defective protein (PAR) polarity complex that promotes axon differentiation, mediates the formation and plasticity of synapses, and assists information input to the hippocampus and storage of memory. As an important synapse regulator, aberrant expression of LRRC4 has been detected in autism, spinal injury and GBs. LRRC4 is a candidate susceptibility gene for autism and a neuro-protective factor in spinal nerve damage. In GBs, LRRC4 is a novel inhibitor of autophagy, and an inhibitor of protein-protein interactions involving in temozolomide resistance, tumor immune microenvironment, and formation of circular RNA.
Humans
;
Cell Line, Tumor
;
Glioblastoma/metabolism*
;
Leucine
;
Leucine-Rich Repeat Proteins/genetics*
;
MicroRNAs
;
Nerve Tissue Proteins/genetics*
;
Tumor Microenvironment
4.Effect of Morus alba extract sanggenon C on growth and proliferation of glioblastoma cells.
Wen-Han TANG ; Zhi-Ning ZHANG ; Hua-Rui CAI ; Wei SUN ; He YANG ; Er-Hu ZHAO ; Hong-Juan CUI
China Journal of Chinese Materia Medica 2023;48(1):211-219
Glioblastoma is the most common primary cranial malignancy, and chemotherapy remains an important tool for its treatment. Sanggenon C(San C), a class of natural flavonoids extracted from Morus plants, is a potential antitumor herbal monomer. In this study, the effect of San C on the growth and proliferation of glioblastoma cells was examined by methyl thiazolyl tetrazolium(MTT) assay and 5-bromodeoxyuridinc(BrdU) labeling assay. The effect of San C on the tumor cell cycle was examined by flow cytometry, and the effect of San C on clone formation and self-renewal ability of tumor cells was examined by soft agar assay. Western blot and bioinformatics analysis were used to investigate the mechanism of the antitumor activity of San C. In the presence of San C, the MTT assay showed that San C significantly inhibited the growth and proliferation of tumor cells in a dose and time-dependent manner. BrdU labeling assay showed that San C significantly attenuated the DNA replication activity in the nucleus of tumor cells. Flow cytometry confirmed that San C blocked the cell cycle of tumor cells in G_0/G_1 phase. The soft agar clone formation assay revealed that San C significantly attenuated the clone formation and self-renewal ability of tumor cells. The gene set enrichment analysis(GSEA) implied that San C inhibited the tumor cell division cycle by affecting the myelocytomatosis viral oncogene(MYC) signaling pathway. Western blot assay revealed that San C inhibited the expression of cyclin through the regulation of the MYC signaling pathway by lysine demethylase 4B(KDM4B), which ultimately inhibited the growth and proliferation of glioblastoma cells and self-renewal. In conclusion, San C exhibits the potential antitumor activity by targeting the KDM4B-MYC axis to inhibit glioblastoma cell growth, proliferation, and self-renewal.
Humans
;
Glioblastoma/genetics*
;
Bromodeoxyuridine/therapeutic use*
;
Signal Transduction
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Agar
;
Cell Proliferation
;
Cell Line, Tumor
;
Apoptosis
;
Jumonji Domain-Containing Histone Demethylases/metabolism*
5.Hypoxia-induced ROS aggravate tumor progression through HIF-1α-SERPINE1 signaling in glioblastoma.
Lin ZHANG ; Yuanyuan CAO ; Xiaoxiao GUO ; Xiaoyu WANG ; Xiao HAN ; Kouminin KANWORE ; Xiaoliang HONG ; Han ZHOU ; Dianshuai GAO
Journal of Zhejiang University. Science. B 2023;24(1):32-49
Hypoxia, as an important hallmark of the tumor microenvironment, is a major cause of oxidative stress and plays a central role in various malignant tumors, including glioblastoma. Elevated reactive oxygen species (ROS) in a hypoxic microenvironment promote glioblastoma progression; however, the underlying mechanism has not been clarified. Herein, we found that hypoxia promoted ROS production, and the proliferation, migration, and invasion of glioblastoma cells, while this promotion was restrained by ROS scavengers N-acetyl-L-cysteine (NAC) and diphenyleneiodonium chloride (DPI). Hypoxia-induced ROS activated hypoxia-inducible factor-1α (HIF-1α) signaling, which enhanced cell migration and invasion by epithelial-mesenchymal transition (EMT). Furthermore, the induction of serine protease inhibitor family E member 1 (SERPINE1) was ROS-dependent under hypoxia, and HIF-1α mediated SERPINE1 increase induced by ROS via binding to the SERPINE1 promoter region, thereby facilitating glioblastoma migration and invasion. Taken together, our data revealed that hypoxia-induced ROS reinforce the hypoxic adaptation of glioblastoma by driving the HIF-1α-SERPINE1 signaling pathway, and that targeting ROS may be a promising therapeutic strategy for glioblastoma.
Humans
;
Cell Hypoxia
;
Cell Line, Tumor
;
Glioblastoma/pathology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Plasminogen Activator Inhibitor 1/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Signal Transduction
;
Tumor Microenvironment
;
Brain Neoplasms/pathology*
6.Resolving the lineage relationship between malignant cells and vascular cells in glioblastomas.
Fangyu WANG ; Xuan LIU ; Shaowen LI ; Chen ZHAO ; Yumei SUN ; Kuan TIAN ; Junbao WANG ; Wei LI ; Lichao XU ; Jing JING ; Juan WANG ; Sylvia M EVANS ; Zhiqiang LI ; Ying LIU ; Yan ZHOU
Protein & Cell 2023;14(2):105-122
Glioblastoma multiforme (GBM), a highly malignant and heterogeneous brain tumor, contains various types of tumor and non-tumor cells. Whether GBM cells can trans-differentiate into non-neural cell types, including mural cells or endothelial cells (ECs), to support tumor growth and invasion remains controversial. Here we generated two genetic GBM models de novo in immunocompetent mouse brains, mimicking essential pathological and molecular features of human GBMs. Lineage-tracing and transplantation studies demonstrated that, although blood vessels in GBM brains underwent drastic remodeling, evidence of trans-differentiation of GBM cells into vascular cells was barely detected. Intriguingly, GBM cells could promiscuously express markers for mural cells during gliomagenesis. Furthermore, single-cell RNA sequencing showed that patterns of copy number variations (CNVs) of mural cells and ECs were distinct from those of GBM cells, indicating discrete origins of GBM cells and vascular components. Importantly, single-cell CNV analysis of human GBM specimens also suggested that GBM cells and vascular cells are likely separate lineages. Rather than expansion owing to trans-differentiation, vascular cell expanded by proliferation during tumorigenesis. Therefore, cross-lineage trans-differentiation of GBM cells is very unlikely to occur during gliomagenesis. Our findings advance understanding of cell lineage dynamics during gliomagenesis, and have implications for targeted treatment of GBMs.
Mice
;
Animals
;
Humans
;
Glioblastoma/pathology*
;
Endothelial Cells/pathology*
;
DNA Copy Number Variations
;
Brain/metabolism*
;
Brain Neoplasms/pathology*
7.The action mechanism of glioblastoma cell-derived exosome: a review.
Na LI ; Li LUO ; Yating YANG ; Zhaomei LIU ; Xiaoyan QIU ; Mingyu WANG ; Wei WANG ; Xiong XIAO
Chinese Journal of Biotechnology 2023;39(4):1477-1501
Patients with glioblastoma (GBM) generally have a bad prognosis and short overall survival after being treated with surgery, chemotherapy or radiotherapy due to the histological heterogeneity, strong invasive ability and rapid postoperative recurrence of GBM. The components of GBM cell-derived exosome (GBM-exo) can regulate the proliferation and migration of GBM cell via cytokines, miRNAs, DNA molecules and proteins, promote the angiogenesis via angiogenic proteins and non-coding RNAs, mediate tumor immune evasion by targeting immune checkpoints with regulatory factors, proteins and drugs, and reduce drug resistance of GBM cells through non-coding RNAs. GBM-exo is expected to be an important target for the personalized treatment of GBM and a marker for diagnosis and prognosis of this kind of disease. This review summarizes the preparation methods, biological characteristics, functions and molecular mechanisms of GBM-exo on cell proliferation, angiogenesis, immune evasion and drug resistance of GBM to facilitate developing new strategies for the diagnosis and treatment of GBM.
Humans
;
Glioblastoma/genetics*
;
Exosomes/metabolism*
;
MicroRNAs/metabolism*
;
Prognosis
;
Cell Proliferation
;
Brain Neoplasms/genetics*
;
Cell Line, Tumor
8.Expression of Glutathione Peroxidases and Its Effect on Clinical Prognosis in Glioma Patients.
Xiao-Mei REN ; Li ZHANG ; Bao XIN ; Wen-Wen QIAN ; Zeng-Run XIA ; Meng QI ; Xiao-Ping DU ; Chuan-Dao SHI ; Qi-Ling LIU ; Rong-Qiang ZHANG
Acta Academiae Medicinae Sinicae 2022;44(2):276-285
Objective To investigate the relationship between the expression of glutathione peroxidase(GPX)genes and the clinical prognosis in glioma patients,and to construct and evaluate the model for predicting the prognosis of glioma. Methods The clinical information and GPX expression of 663 patients,including 153 patients of glioblastoma(GBM)and 510 patients of low-grade glioma(LGG),were obtained from The Cancer Genome Atlas(TCGA)database.The relationship between GPX expression and patient survival was analyzed.The key GPX affecting the prognosis of glioma was screened out by single- and multi-factor Cox's proportional-hazards regression models and validated by least absolute shrinkage and selection operator(Lasso)regression.Finally,we constructed the model for predicting the prognosis of glioma with the screening results and then used concordance index and calibration curve respectively to evaluate the discrimination and calibration of model. Results Compared with those in the control group,the expression levels of GPX1,GPX3,GPX4,GPX7,and GPX8 were up-regulated in glioma patients(all P<0.001).Moreover,the expression levels of other GPX except GPX3 were higher in GBM patients than in LGG patients(all P<0.001).The Kaplan-Meier curves showed that the progression-free survival of GBM with high expression of GPX1(P=0.013)and GPX4(P=0.040),as well as the overall survival,disease-specific survival,and progression-free survival of LGG with high expression of GPX1,GPX7,and GPX8,was shortened(all P<0.001).GPX7 and GPX8 were screened out as the key factors affecting the prognosis of LGG.The results were further used to construct a nomogram model,which suggested GPX7 was the most important variable.The concordance index of the model was 0.843(95%CI=0.809-0.853),and the calibration curve showed that the predicted and actual results had good consistency. Conclusion GPX7 is an independent risk factor affecting the prognosis of LGG,and the nomogram model constructed with it can be used to predict the survival rate of LGG.
Brain Neoplasms
;
Glioblastoma
;
Glioma/diagnosis*
;
Glutathione Peroxidase/metabolism*
;
Humans
;
Peroxidases
;
Prognosis
;
Proportional Hazards Models
9.Inhibition of Ciliogenesis Enhances the Cellular Sensitivity to Temozolomide and Ionizing Radiation in Human Glioblastoma Cells.
Li WEI ; Wei MA ; Hui CAI ; Shao Peng PENG ; Huan Bing TIAN ; Ju Fang WANG ; Lan GAO ; Jin Peng HE
Biomedical and Environmental Sciences 2022;35(5):419-436
Objective:
To investigate the function of primary cilia in regulating the cellular response to temozolomide (TMZ) and ionizing radiation (IR) in glioblastoma (GBM).
Methods:
GBM cells were treated with TMZ or X-ray/carbon ion. The primary cilia were examined by immunostaining with Arl13b and γ-tubulin, and the cellular resistance ability was measured by cell viability assay or survival fraction assay. Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride, the autophagy was measured by acridine orange staining assay. The DNA damage repair ability was estimated by the kinetic curve of γH2AX foci, and the DNA-dependent protein kinase (DNA-PK) activation was detected by immunostaining assay.
Results:
Primary cilia were frequently preserved in GBM, and the induction of ciliogenesis decreased cell proliferation. TMZ and IR promoted ciliogenesis in dose- and time-dependent manners, and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR. The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair. The interference of ciliogenesis reduced DNA-PK activation, and the knockdown of DNA-PK led to cilium formation and elongation.
Conclusion
Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.
Antineoplastic Agents, Alkylating/therapeutic use*
;
Brain Neoplasms/metabolism*
;
Cell Line, Tumor
;
DNA/therapeutic use*
;
Glioblastoma/metabolism*
;
Humans
;
Radiation, Ionizing
;
Temozolomide/therapeutic use*
10.Nuclear Dbf2-related Kinase 1 functions as tumor suppressor in glioblastoma by phosphorylation of Yes-associated protein.
Bin CHEN ; Bin LIU ; Tao YU ; Yun-Feng HAN ; Chao WU ; Zhen-Yu WANG
Chinese Medical Journal 2021;134(17):2054-2065
BACKGROUND:
The Nuclear Dbf2-related (NDR1) kinase is a member of the NDR/LATS family, which was a supplementary of Hippo pathway. However, whether NDR1 could inhibit glioblastoma (GBM) growth by phosphorylating Yes-associated protein (YAP) remains unknown. Meanwhile, the role of NDR1 in GBM was not clear. This study aimed to investigate the role of NDR1-YAP pathway in GBM.
METHODS:
Bioinformation analysis and immunohistochemistry (IHC) were performed to identify the expression of NDR1 in GBM. The effect of NDR1 on cell proliferation and cell cycle was analyzed utilizing CCK-8, clone formation, immunofluorescence and flow cytometry, respectively. In addition, the xenograft tumor model was established as well. Protein interaction was examined by Co-immunoprecipitation and immunofluorescence to observe co-localization.
RESULTS:
Bioinformation analysis and IHC of our patients' tumor tissues showed that expression of NDR1 in tumor tissue was relatively lower than that in normal tissues and was positively related to a lower survival rate. NDR1 could markedly reduce the proliferation and colony formation of U87 and U251. Furthermore, the results of flow cytometry showed that NDR1 led to cell cycle arrest at the G1 phase. Tumor growth was also inhibited in xenograft nude mouse models in NDR1-overexpression group. Western blotting and immunofluorescence showed that NDR1 could integrate with and phosphorylate YAP at S127 site. Meanwhile, NDR1 could mediate apoptosis process.
CONCLUSION
In summary, our findings point out that NDR1 functions as a tumor suppressor in GBM. NDR1 is identified as a novel regulator of YAP, which gives us an in-depth comprehension of the Hippo signaling pathway.
Animals
;
Cell Nucleus/metabolism*
;
Cell Proliferation
;
Glioblastoma
;
Humans
;
Mice
;
Phosphorylation
;
Protein-Serine-Threonine Kinases/metabolism*
;
Signal Transduction

Result Analysis
Print
Save
E-mail