1.Mitochondrial genome sequence characteristics and phylogenetic analysis of Schizothorax argentatus.
Yuping LIU ; Jianyong HU ; Zijun NING ; Peiyi XIAO ; Tianyan YANG
Chinese Journal of Biotechnology 2023;39(7):2965-2985
Schizothorax argentatus that only distributes in the Ili River basin in Xinjiang is one of the rare and endangered species of schizothorax in China, thus has high scientific and economic values. In this study, the complete mitochondrial genome sequence of S. argenteus with a length of 16 580 bp was obtained by high-throughput sequencing. The gene compositions and arrangement were similar to those of typical vertebrates. It contained 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding region (D-loop). The nucleotide compositions were A (30.25%), G (17.28%), C (27.20%), and T (25.27%), respectively, showing obvious AT bias and anti-G bias. Among the tRNA genes, only tRNA-Ser(GCU) could not form a typical cloverleaf structure due to the lack of dihydrouracil arm. The AT-skew and GC-skew values of the ND6 gene were fluctuating the most, suggesting that the gene may experience different selection and mutation pressures from other genes. The mitochondrial control region of S. argenteus contained three different domains, i.e., termination sequence region (ETAS), central conserved region (CSB-F, CSB-E, CSB-D, and CSB-B), and conserved sequence region (CSB1, CSB2, and CSB3). The conserved sequence fragment TT (AT) nGTG, which was ubiquitous in Cypriniformes, was identified at about 50 bp downstream CSB3. Phylogenetic relationships based on the complete mitochondrial genome sequence of 28 Schizothorax species showed that S. argenteus had differentiated earlier and had a distant relationship with other species, which may be closely related to the geographical location and the hydrological environment where it lives.
Animals
;
Genome, Mitochondrial/genetics*
;
Phylogeny
;
Sequence Analysis, DNA
;
Cyprinidae/genetics*
;
RNA, Transfer/genetics*
;
DNA, Mitochondrial/genetics*
;
Genes, Mitochondrial
2.Progress of research on the genetic diseases caused by variants of mitochondrial aminoacyl-tRNA synthase gene.
Xiangyue ZHAO ; Tingting YU ; Jian WANG
Chinese Journal of Medical Genetics 2022;39(12):1424-1428
As conserved enzymes with important functions, aminoacyl-tRNA synthetase are expressed ubiquitously in cells. These include cytoplasmic aminoacyl-tRNA synthetase, mitochondrial aminoacyl-tRNA synthetase and bifunctional aminoacyl-tRNA synthetase. Mitochondrial aminoacyl-tRNA synthetases catalyze the binding of amino acids with its corresponding tRNA in the mitochondria and participate in the translation of 13 subunits of oxidative phosphorylation enzyme complexes encoded by the mitochondrial genome. Mutations in genes encoding mitochondrial aminoacyl-tRNA synthase may cause a variety of genetic disorders. This review has summarized the clinical characteristics, molecular pathogenesis and treatment of genetic diseases caused by mutations of such genes.
Humans
;
RNA, Transfer, Amino Acyl
;
Genes, Mitochondrial
;
Amino Acyl-tRNA Synthetases/genetics*
;
Genome, Mitochondrial
;
Mitochondria/genetics*
3.Mitochondrial DNA Heteroplasmy of Hair Shaft Using HID Ion GeneStudioTM S5 Sequencing System.
Feng CHENG ; Qing Xia ZHANG ; Cheng Jian CHEN ; Wan Ting LI ; Jia Rong ZHANG ; Geng Qian ZHANG ; Jiang Wei YAN
Journal of Forensic Medicine 2021;37(1):21-25
Objective To study the heteroplasmy of the whole mitochondrial genome genotyping result of hair shaft samples using HID Ion GeneStudioTM S5 Sequencing System. Methods The buccal swabs and blood of 8 unrelated individuals, and hair shaft samples from different parts of the same individual were collected. Amplification of whole mitochondrial genome was performed using Precision ID mtDNA Whole Genome Panel. Analysis and detection of whole mitochondrial genome were carried out using the HID Ion GeneStudioTM S5 Sequencing System. Results The mitochondrial DNA sequences in temporal hair shaft samples from 2 individuals showed heteroplasmy, while whole mitochondrial genome genotyping results of buccal swabs, blood, and hair samples from the other 6 unrelated individuals were consistent. A total of 119 base variations were observed from the 8 unrelated individuals. The numbers of variable sites of the individuals were 29, 40, 38, 35, 13, 36, 40 and 35, respectively. Conclusion Sequence polymorphism can be fully understood using HID Ion GeneStudioTM S5 Sequencing system.
DNA, Mitochondrial/genetics*
;
Genome, Mitochondrial/genetics*
;
Heteroplasmy
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Sequence Analysis, DNA
4.Complete Sequence of the Mitochondrial Genome of Spirometra ranarum: Comparison with S. erinaceieuropaei and S. decipiens
Hyeong Kyu JEON ; Hansol PARK ; Dongmin LEE ; Seongjun CHOE ; Yeseul KANG ; Mohammed Mebarek BIA ; Sang Hwa LEE ; Keeseon S EOM
The Korean Journal of Parasitology 2019;57(1):55-60
This study was undertaken to determine the complete mitochondrial DNA sequence and structure of the mitochondrial genome of Spirometra ranarum, and to compare it with those of S. erinaceieuropaei and S. decipiens. The aim of this study was to provide information of the species level taxonomy of Spirometra spp. using the mitochondrial genomes of 3 Spirometra tapeworms. The S. ranarum isolate originated from Myanmar. The mitochondrial genome sequence of S. ranarum was compared with that of S. erinaceieuropaei (GenBank no. KJ599680) and S. decipiens (Gen-Bank no. KJ599679). The complete mtDNA sequence of S. ranarum comprised 13,644 bp. The S. ranarum mt genome contained 36 genes comprising 12 protein-coding genes, 22 tRNAs and 2 rRNAs. The mt genome lacked the atp8 gene, as found for other cestodes. All genes in the S. ranarum mitochondrial genome are transcribed in the same direction and arranged in the same relative position with respect to gene loci as found for S. erinaceieuropaei and S. decipiens mt genomes. The overall nucleotide sequence divergence of 12 protein-coding genes between S. ranarum and S. decipiens differed by 1.5%, and 100% sequence similarity was found in the cox2 and nad6 genes, while the DNA sequence divergence of the cox1, nad1, and nad4 genes of S. ranarum and S. decipiens was 2.2%, 2.1%, and 2.6%, respectively.
Base Sequence
;
Cestoda
;
Classification
;
DNA, Mitochondrial
;
Genes, vif
;
Genome
;
Genome, Mitochondrial
;
Myanmar
;
RNA, Transfer
;
Spirometra
5.Enhanced Anti-Cancer Effects of Conditioned Medium from Hypoxic Human Umbilical Cord–Derived Mesenchymal Stem Cells
Kyu Hyun HAN ; Ae Kyeong KIM ; Gun Jae JEONG ; Hye Ran JEON ; Suk Ho BHANG ; Dong Ik KIM
International Journal of Stem Cells 2019;12(2):291-303
BACKGROUND AND OBJECTIVES: There have been contradictory reports on the pro-cancer or anti-cancer effects of mesenchymal stem cells. In this study, we investigated whether conditioned medium (CM) from hypoxic human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) (H-CM) showed enhanced anti-cancer effects compared with CM from normoxic hUC-MSCs (N-CM). METHODS AND RESULTS: Compared with N-CM, H-CM not only strongly reduced cell viability and increased apoptosis of human cervical cancer cells (HeLa cells), but also increased caspase-3/7 activity, decreased mitochondrial membrane potential (MMP), and induced cell cycle arrest. In contrast, cell viability, apoptosis, MMP, and cell cycle of human dermal fibroblast (hDFs) were not significantly changed by either CM whereas caspase-3/7 activity was decreased by H-CM. Protein antibody array showed that activin A, Beta IG-H3, TIMP-2, RET, and IGFBP-3 were upregulated in H-CM compared with N-CM. Intracellular proteins that were upregulated by H-CM in HeLa cells were represented by apoptosis and cell cycle arrest terms of biological processes of Gene Ontology (GO), and by cell cycle of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. In hDFs, negative regulation of apoptosis in biological process of GO and PI3K-Akt signaling pathway of KEGG pathways were represented. CONCLUSIONS: H-CM showed enhanced anti-cancer effects on HeLa cells but did not influence cell viability or apoptosis of hDFs and these different effects were supported by profiling of secretory proteins in both kinds of CM and intracellular signaling of HeLa cells and hDFs.
Activins
;
Anoxia
;
Apoptosis
;
Biological Processes
;
Cell Cycle
;
Cell Cycle Checkpoints
;
Cell Survival
;
Culture Media, Conditioned
;
Fibroblasts
;
Gene Ontology
;
Genome
;
HeLa Cells
;
Humans
;
Insulin-Like Growth Factor Binding Protein 3
;
Membrane Potential, Mitochondrial
;
Mesenchymal Stromal Cells
;
Tissue Inhibitor of Metalloproteinase-2
;
Uterine Cervical Neoplasms
6.Differential Diagnosis of Human Sparganosis Using Multiplex PCR
Hyeong Kyu JEON ; Kyu Heon KIM ; Woon Mok SOHN ; Keeseon S EOM
The Korean Journal of Parasitology 2018;56(3):295-300
Human sparganosis was diagnosed by morphological and genetic analyses in Korea. The complete mitochondrial genomes of Spirometra erinaceieuropaei and S. decipiens isolated in Korea have been recorded. Present study was performed to provide information to diagnose the etiologic agent of sparganosis by multiplex PCR using mitochondrial genome sequences of S. erinaceieuropaei and S. decipiens. In an effort to examine the differential diagnosis of spirometrid tapeworms, multiplex PCR assays were performed on plerocercoid larvae of S. erinaceieuropaei and S. decipiens. The PCR products obtained using species-specific primers were positively detected in all PCR assays on mixture of S. erinaceieuropaei and S. decipiens DNA. S. erinaceieuropaei-specific bands (239 bp and 401 bp) were obtained from all PCR assays using a mixture of S. erinaceieuropaei-specific primers (Se/Sd-1800F and Se-2018R; Se/Sd-7955F and Se-8356R) and S. erinaceieuropaei template DNA. S. decipiens-specific bands (540 bp and 644 bp) were also detected in all PCR assays containing mixtures of S. decipiens-specific primers (Se/Sd-1800F and Sd-2317R; Se/Sd-7955F and Sd-8567R) and S. decipiens template DNA. Sequence analyses on these species-specific bands revealed 100% sequence identity with homologous regions of the mtDNA sequences of S. erinaceieuropaei and S. decipiens. The multiplex PCR assay was useful for differential diagnosis of human sparganosis by detecting different sizes in species-specific bands.
Cestoda
;
Diagnosis, Differential
;
DNA
;
DNA, Mitochondrial
;
Genome, Mitochondrial
;
Humans
;
Korea
;
Multiplex Polymerase Chain Reaction
;
Polymerase Chain Reaction
;
Sequence Analysis
;
Sparganosis
;
Sparganum
;
Spirometra
7.Complete Mitochondrial Genome of the Chagas Disease Vector, Triatoma rubrofasciata
Li DONG ; Xiaoling MA ; Mengfei WANG ; Dan ZHU ; Yuebiao FENG ; Yi ZHANG ; Jingwen WANG
The Korean Journal of Parasitology 2018;56(5):515-519
Triatoma rubrofasciata is a wide-spread vector of Chagas disease in Americas. In this study, we completed the mitochondrial genome sequencing of T. rubrofasciata. The total length of T. rubrofasciata mitochondrial genome was 17,150 bp with the base composition of 40.4% A, 11.6% G, 29.4% T and 18.6% C. It included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. We constructed a phylogenetic tree on the 13 protein-coding genes of T. rubrofasciata and other 13 closely related species to show their phylogenic relationship. The determination of T. rubrofasciata mitogenome would play an important role in understanding the genetic diversity and evolution of triatomine bugs.
Americas
;
Base Composition
;
Chagas Disease
;
Genes, rRNA
;
Genetic Variation
;
Genome, Mitochondrial
;
Phylogeny
;
RNA, Transfer
;
Trees
;
Triatoma
8.Spectrum of mitochondrial genome instability and implication of mitochondrial haplogroups in Korean patients with acute myeloid leukemia.
Hye Ran KIM ; Min Gu KANG ; Young Eun LEE ; Bo Ram NA ; Min Seo NOH ; Seung Hyun YANG ; Jong Hee SHIN ; Myun Geun SHIN
Blood Research 2018;53(3):240-249
BACKGROUND: Mitochondrial DNA (mtDNA) mutations may regulate the progression and chemosensitivity of leukemia. Few studies regarding mitochondrial aberrations and haplogroups in acute myeloid leukemia (AML) and their clinical impacts have been reported. Therefore, we focused on the mtDNA length heteroplasmies minisatellite instability (MSI), copy number alterations, and distribution of mitochondrial haplogroups in Korean patients with AML. METHODS: This study investigated 74 adult patients with AML and 70 controls to evaluate mtDNA sequence alterations, MSI, mtDNA copy number, haplogroups, and their clinical implications. The hypervariable (HV) control regions (HV1 and HV2), tRNA(leu1)gene, and cytochrome b gene of mtDNA were analyzed. Two mtDNA minisatellite markers, 16189 poly-C (¹⁶¹⁸⁴CCCCCTCCCC¹⁶¹⁹³, 5CT4C) and 303 poly-C (³⁰³CCCCCCCTCCCCC³¹⁵, 7CT5C), were used to examine the mtDNA MSI. RESULTS: In AML, most mtDNA sequence variants were single nucleotide substitutions, but there were no significant differences compared to those in controls. The number of mtMSI patterns increased in AML. The mean mtDNA copy number of AML patients increased approximately 9-fold compared to that of controls (P < 0.0001). Haplogroup D4 was found in AML with a higher frequency compared to that in controls (31.0% vs. 15.7%, P=0.046). None of the aforementioned factors showed significant impacts on the outcomes. CONCLUSION: AML cells disclosed more heterogeneous patterns with the mtMSI markers and had increased mtDNA copy numbers. These findings implicate mitochondrial genome instability in primary AML cells. Therefore, mtDNA haplogroup D4 might be associated with AML risk among Koreans.
Adult
;
Cytochromes b
;
DNA, Mitochondrial
;
Genome, Mitochondrial*
;
Humans
;
Leukemia
;
Leukemia, Myeloid, Acute*
;
Minisatellite Repeats
9.Congenital Orbital Fibrosis: Molecular Genetic Analysis by Whole-Exome and Mitochondrial Genome Sequencing.
JaeSang KO ; Hyun Joo LEE ; Jin Sung LEE ; Jin Sook YOON
Yonsei Medical Journal 2017;58(5):1078-1080
A 3-year-old girl presented with congenital orbital fibrosis. We performed molecular genetic analysis by whole exome and mitochondrial genome sequencing. No pathologic mutation was identified in the present case. To our best knowledge, this study presents the first report on the findings of mutational analysis of a patient with congenital orbital fibrosis.
Child, Preschool
;
DNA Mutational Analysis
;
Exome
;
Female
;
Fibrosis*
;
Genome, Mitochondrial*
;
Humans
;
Molecular Biology*
;
Orbit*
10.Analysis of Nuclear Mitochondrial DNA Segments of Nine Plant Species: Size, Distribution, and Insertion Loci.
Genomics & Informatics 2016;14(3):90-95
Nuclear mitochondrial DNA segment (Numt) insertion describes a well-known phenomenon of mitochondrial DNA transfer into a eukaryotic nuclear genome. However, it has not been well understood, especially in plants. Numt insertion patterns vary from species to species in different kingdoms. In this study, the patterns were surveyed in nine plant species, and we found some tip-offs. First, when the mitochondrial genome size is relatively large, the portion of the longer Numt is also larger than the short one. Second, the whole genome duplication event increases the ratio of the shorter Numt portion in the size distribution. Third, Numt insertions are enriched in exon regions. This analysis may be helpful for understanding plant evolution.
DNA, Mitochondrial*
;
Exons
;
Genome
;
Genome, Mitochondrial
;
Plants*

Result Analysis
Print
Save
E-mail