1.Construction of recombinant adenovirus expressing EGFRvIII extracellular domain gene and preparation of single domain antibody.
Huimin ZHANG ; Jiaqi XU ; Yi CHENG ; Shan FU ; Yanlong LIU ; Yujing HU ; Yanan DU ; Fuxiang BAO
Chinese Journal of Biotechnology 2022;38(9):3551-3562
		                        		
		                        			
		                        			The aim of this study was to construct a recombinant adenovirus expressing extracellular domain gene of human epidermal growth factor receptor variant Ⅲ (EGFRvIII ECD), and to prepare single domain antibody targeting EGFRvIII ECD by immunizing camels and constructing phage display antibody library. Total RNA was extracted from human prostate cancer cell line PC-3 cells and reversely transcribed into cDNA. EGFRvIII ECD gene was amplified using cDNA as template, and ligated into pAdTrack-CMV plasmid vector and transformed into E. coli BJ5183 competent cells containing pAdEasy-1 plasmid for homologous recombination. The recombinant adenovirus expressing EGFRvIII ECD was obtained through transfecting the plasmid into HEK293A cells. The recombinant adenovirus was used to immunize Bactrian camel to construct EGFRvIII ECD specific single domain antibody library. The single domain antibody was obtained by screening the library with EGFRvIII protein and the antibody was expressed, purified and identified. The results showed that recombinant adenovirus expressing EGFRvIII ECD was obtained. The capacity of EGFRvIII specific phage single domain antibody library was 1.4×109. After three rounds of enrichment and screening, thirty-one positive clones binding to EGFRvIII ECD were obtained by phage-ELISA, and the recombinant single domain antibody E14 with highest OD450 value was expressed and purified. The recombinant E14 antibody can react with EGFRvIII ECD with high affinity in ELISA assessment. The results indicated that the EGFRvIII specific single domain antibody library with high capacity and diversity was constructed and the single domain antibody with binding activity to EGFRvIII was obtained by screening the library. This study may facilitate the diagnosis and treatment of EGFRvIII targeted malignant tumors in the future.
		                        		
		                        		
		                        		
		                        			Adenoviridae/genetics*
		                        			;
		                        		
		                        			DNA, Complementary
		                        			;
		                        		
		                        			ErbB Receptors
		                        			;
		                        		
		                        			Escherichia coli/genetics*
		                        			;
		                        		
		                        			Genetic Vectors/genetics*
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			RNA
		                        			;
		                        		
		                        			Recombinant Proteins/metabolism*
		                        			;
		                        		
		                        			Single-Domain Antibodies
		                        			
		                        		
		                        	
2.Construction of a novel lentiviral vector knocking down PD-1 via microRNA and its application in CAR-T cells.
Hui CHEN ; Xi JIN ; Xiaoman ZHANG ; Jimin GAO
Chinese Journal of Biotechnology 2020;36(7):1395-1404
		                        		
		                        			
		                        			By inserting microRNAs into the intron of EF1α promoter, we constructed a novel lentiviral vector knocking down PD-1 gene via microRNA and applied it to CAR-T cells. Lentiviral transduction efficiency and PD-1-silencing efficiency were detected by flow cytometry. PD-1 expression was detected by Western blotting. Relative expression of microRNA was measured by Q-PCR. Cytotoxicity of CAR-T cells based on this vector was tested by luciferase bioluminescence and flow cytometry. Compared with lentiviral vector with microRNA transcribed by U6 promotor, the transduction efficiency of lentiviral vector with microRNA which was inserted into the intron of EF1α promoter was more significant, and the knockdown rate of PD-1 was more than 90%, which was validated by flow cytometry and Western blotting. And the relative expression level of microRNA in Jurkat cells transduced with this novel lentiviral vector was shown by Q-PCR. Compared with normal CAR-T cells, CAR-T cells based on this vector showed stronger cytotoxicity against PD-L1 positive Raji cells. We successfully constructed a novel lentiviral vector that knocked down PD-1 via microRNA and verified the superiority of its transduction efficiency and knockdown efficiency of PD-1. CAR-T cells based on this vector can exert a more powerful cytotoxicity, thus providing theoretical support for the subsequent treatment of PD-L1 positive tumors.
		                        		
		                        		
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lentivirus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			MicroRNAs
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Programmed Cell Death 1 Receptor
		                        			;
		                        		
		                        			Promoter Regions, Genetic
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
3.Prokaryotic expression, purification and functional identification of epidermal pattern factors in Arabidopsis thaliana.
Zhuping JIN ; Cheng LI ; Lei WANG ; Yanxi PEI
Chinese Journal of Biotechnology 2020;36(4):792-800
		                        		
		                        			
		                        			Stomatal density is important for crop yield. In this paper, we studied the epidermal pattern factors (EPFs) related to stomatal development. Prokaryotic expression vectors were constructed to obtain EPFs. Then the relationship between EPFs and hydrogen sulfide (H2S) was established. First, AtEPF1, AtEPF2 and AtEPFL9 were cloned and constructed to pET28a vectors. Then recombinant plasmids pET28a-AtEPF1, pET28a-AtEPF2 and pET28a-AtEPFL9 were digested and sequenced, showing successful construction. Finally, they were transformed into E. coli BL21(DE3) separately and induced to express by isopropyl β-D-galactoside (IPTG). The optimized expression conditions including IPTG concentration (0.5, 0.3 and 0.05 mmol/L), temperature (28 °C, 28 °C and 16 °C) and induction time (16 h, 16 h and 20 h) were obtained. The bands of purified proteins were about 18 kDa, 19 kDa and 14.5 kDa, respectively. In order to identify their function, the purified AtEPF2 and AtEPFL9 were presented to Arabidopsis thaliana seedlings. Interestingly, the H2S production rate decreased or increased compared with the control, showing significant differences. That is, EPFs affected the production of endogenous H2S in plants. These results provide a foundation for further study of the relationship between H2S and EPFs on stomatal development, but also a possible way to increase the yield or enhance the stress resistance.
		                        		
		                        		
		                        		
		                        			Arabidopsis
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Arabidopsis Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			isolation & purification
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Escherichia coli
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Hydrogen Sulfide
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Plasmids
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Seedlings
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
4.Silencing Calreticulin Expression Inhibits Invasion Ability of SNK6 Cells in Vitro via Down-Regulating Expression of VEGF and MMP2/9.
Yan ZHENG ; Xiong-Peng ZHU ; Chun-Tuan LI ; Yuan-Ling HUANG
Journal of Experimental Hematology 2019;27(2):433-438
		                        		
		                        			OBJECTIVE:
		                        			To investigate the effect of steadily down-regulating the expression of calreticulin (CALR) on the invasion of natural killer/T-cell lymphoma SNK6 cells, and explore its possible mechanism.
		                        		
		                        			METHODS:
		                        			The sequences of specific short hairpin RNA (shRNA) targeting on human CALR were designed, and were inserted into pLKO.1-puro lentivirus vector, and the reconbinant lentivirus vector was obtained; the lentivirus particles were backed by three-plasmid system and transfected into SNK6 cells, the SNK6 cells stably down-regulating the CALR expression were sercened by puromytain, the CALR-silencing effect was verified by real-time PCR and Western blot. CCK-8 assay was used to evaluate the cell viability, The transwell invasion assays was used to analyse invasion of SNK6 cells. The mRNA expression of Calreticulin, MMP2, MMP9 and VEGF was determined by real time PCR, the protein expression of Calreticulin and GAPDH was analyzed by Western blot.
		                        		
		                        			RESULTS:
		                        			The recombinant lentiviral vector pLKO.1-puro-shCALR was successfully constructed, packed into the lentivirus, then the SNK6 cells stably down-regulating Calreticulin expression was obtained. When Calreticulin was down-rengulated in SNK6 cells, the proliferation rate was reduced and the invasion ability was decreased; the mRNA levels of VEGF and MMP-2/9 also were reduced.
		                        		
		                        			CONCLUSION
		                        			The stable down-regnlation of CALR expression in SNK6 cells can attenuate the imvasiveness of SNK6 cells, which maybe related with transcriptional decrease of MMP2, MMP9 and VEGF.
		                        		
		                        		
		                        		
		                        			Calreticulin
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Lentivirus
		                        			;
		                        		
		                        			Matrix Metalloproteinase 2
		                        			;
		                        		
		                        			Matrix Metalloproteinase 9
		                        			;
		                        		
		                        			RNA Interference
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Vascular Endothelial Growth Factor A
		                        			
		                        		
		                        	
5.Rapid and Sparse Labeling of Neurons Based on the Mutant Virus-Like Particle of Semliki Forest Virus.
Fan JIA ; Xutao ZHU ; Pei LV ; Liang HU ; Qing LIU ; Sen JIN ; Fuqiang XU
Neuroscience Bulletin 2019;35(3):378-388
		                        		
		                        			
		                        			Sparse labeling of neurons contributes to uncovering their morphology, and rapid expression of a fluorescent protein reduces the experiment range. To achieve the goal of rapid and sparse labeling of neurons in vivo, we established a rapid method for depicting the fine structure of neurons at 24 h post-infection based on a mutant virus-like particle of Semliki Forest virus. Approximately 0.014 fluorescent focus-forming units of the mutant virus-like particle transferred enhanced green fluorescent protein into neurons in vivo, and its affinity for neurons in vivo was stronger than for neurons in vitro and BHK21 (baby hamster kidney) cells. Collectively, the mutant virus-like particle provides a robust and convenient way to reveal the fine structure of neurons and is expected to be a helper virus for combining with other tools to determine their connectivity. Our work adds a new tool to the approaches for rapid and sparse labeling of neurons in vivo.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cells, Cultured
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Immunohistochemistry
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Mice, Inbred C57BL
		                        			;
		                        		
		                        			Microscopy, Fluorescence
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Neurons
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Purkinje Cells
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Semliki forest virus
		                        			;
		                        		
		                        			genetics
		                        			
		                        		
		                        	
6.Knocking down fascin inhibits cervical cancer cell proliferation and tumorigenesis in nude mice.
Xian LI ; Shanshan LI ; Xinxin WANG ; Surong ZHAO ; Hao LIU
Journal of Southern Medical University 2018;38(12):1409-1414
		                        		
		                        			OBJECTIVE:
		                        			To study the effect of knocking down fascin on cervical cancer cell proliferation and tumorigenicity in nude mice.
		                        		
		                        			METHODS:
		                        			Cervical cancer CaSki cells were infected with a lentiviral vector carrying fascin siRNA or with a negative control lentivirus, and fascin mRNA and protein expressions in the cells were detected using qRT-PCR and Western blotting. MTT assay was used to determine the proliferation of CaSki cells with fascin knockdown. CaSki cells transfected with fascin siRNA or the control lentiviral vector and non-transfected CaSki cells were inoculated subcutaneously in nude mice, and the volume and weight of the transplanted tumor were measured; Western blotting was used to detect the expressions of proliferating cell nuclear antigen (PCNA), survivin, cyclin dependent kinase 4 (CDK4) and p21 proteins in the tumor xenograft.
		                        		
		                        			RESULTS:
		                        			Infection with the lentiviral vector carrying fascin siRNA, but not the negative control vector, caused significant reductions in the expression levels of fascin mRNA and protein in CaSki cells ( < 0.05). Fascin knockdown resulted in significantly reduced proliferation of CaSki cells ( < 0.05). The nude mice inoculated with CaSki cells with fascin knockdown showed reduced tumor volume and weight, lowered levels of PCNA, survivin and CDK4, and increased expression of p21 protein in the tumor xenograft compared with the control mice. The negative control lentivirus did not affect the proliferation or tumorigenicity of CaSki cells in nude mice or the expression levels of PCNA, survivin, CDK4 or p21 proteins in the xenografts.
		                        		
		                        			CONCLUSIONS
		                        			Knocking down fascin can inhibit the growth and tumorigenicity of cervical cancer cells in nude mice.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Apoptosis
		                        			;
		                        		
		                        			Carrier Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cell Line, Tumor
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase 4
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Cyclin-Dependent Kinase Inhibitor p21
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Knockdown Techniques
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Mice, Nude
		                        			;
		                        		
		                        			Microfilament Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Proliferating Cell Nuclear Antigen
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			Survivin
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			Tumor Burden
		                        			;
		                        		
		                        			Uterine Cervical Neoplasms
		                        			;
		                        		
		                        			etiology
		                        			;
		                        		
		                        			pathology
		                        			
		                        		
		                        	
7.Lentiviral vectors carrying siRNA inhibit S1PR3 gene expression in the corpus cavernosum smooth muscle cells of rats with spontaneous hypertension.
Bang-Cai WU ; Ji-Yi XIA ; Rui JIANG ; Hai-Fan YANG
National Journal of Andrology 2017;23(2):110-119
		                        		
		                        			Objective:
		                        			To screen lentiviral vectors carrying siRNA which can specifically down-regulate the gene expression of the sphingosine-1-phosphate receptor 3 (S1PR3) in the corpus cavernosum smooth muscle (CCSM) cells of rats with spontaneous hypertension (SHT) and investigate the influence of the vectors on the signaling pathways of ROCK1, ROCK2 and eNOS in the CCSM cells of SHT rats.
		                        		
		                        			METHODS:
		                        			Using the S1PR3 mRNA sequence of the rat as an interfering target, we designed and synthesized three pairs of siRNA sequences (siRNA1, 2 and 3) targeting S1PR3 and one pair of negative control, and then constructed and packaged them into lentiviral vectors. We cultured the CCSM cells of SHT and Wistar-Kyoto (WKY) rats in vitro and randomly divided them into groups A (SHT untransfected control), B (SHT transfected and carrying negative control virus), C (SHT transfected and carrying siRNA1 targeting S1PR3), D (SHT transfected and carrying siRNA2 targeting S1PR3), E (SHT transfected and carrying siRNA3 targeting S1PR3), and F (WKY untransfected control). With the multiplicity of infection (MOI) = 60, we transfected the CCSM cells of the SHT rats with the lentiviral vector and then determined the expression of the green fluorescent protein (GFP) as well as the mRNA and protein expressions of S1PR3, ROCK1, ROCK2 and eNOS in the CCSM cells of the SHT and WKY rats by RT-PCR and Western blot.
		                        		
		                        			RESULTS:
		                        			Gene sequencing proved the successful construction of the lentiviral vector. The transfection efficiency of the CCSM cells of the rats was >80% in groups B, C, D and E. Compared with group A, the mRNA and protein expressions of S1PR3, ROCK1 and ROCK2 exhibited no significant difference in group B but were remarkably decreased in groups C, D, E and F (P< 0.05), most significantly in group E, with the inhibition rates of the mRNA and protein expressions of S1PR3 of (34.2±2.9) and (77.7±4.7)%, those of ROCK1 of (33.3±1.4) and (51.1±7.3)%, and those of ROCK2 of (30.8±3.6) and (58.32±5.5)%, respectively. The mRNA and protein expressions of eNOS in group A showed no significant difference from those in groups B, C, D and E (P>0.05) but remarkably lower than those in group F (P< 0.05). Compared with group F, the mRNA and protein expressions of S1PR3, ROCK1 and ROCK2 were not significantly different from those in group E (P>0.05) but markedly increased in groups A, B, C and D (P< 0.05), while those of eNOS remarkably decreased in groups A, B, C, D and E (P< 0.05).
		                        		
		                        			CONCLUSIONS
		                        			The three constructed lentiviral vectors carrying siRNA targeting different loci of the S1PR3 gene could significantly inhibit the expression of S1P3 as well as RhoA/Rho kinase signaling pathways in the CCSM cells of SHT rats, and the vector carrying siRNA3 exhibited the highest inhibitory effect.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Down-Regulation
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			Green Fluorescent Proteins
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Lentivirus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			Male
		                        			;
		                        		
		                        			Myocytes, Smooth Muscle
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Nitric Oxide Synthase Type III
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Penis
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			RNA, Messenger
		                        			;
		                        		
		                        			RNA, Small Interfering
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Random Allocation
		                        			;
		                        		
		                        			Rats
		                        			;
		                        		
		                        			Rats, Inbred WKY
		                        			;
		                        		
		                        			Receptors, Lysosphingolipid
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Sphingosine-1-Phosphate Receptors
		                        			;
		                        		
		                        			Transfection
		                        			;
		                        		
		                        			rho-Associated Kinases
		                        			;
		                        		
		                        			metabolism
		                        			
		                        		
		                        	
8.Increasing the safety and efficacy of chimeric antigen receptor T cell therapy.
Protein & Cell 2017;8(8):573-589
		                        		
		                        			
		                        			Chimeric antigen receptor (CAR) T cell therapy is a promising cancer treatment that has recently been undergoing rapid development. However, there are still some major challenges, including precise tumor targeting to avoid off-target or "on-target/off-tumor" toxicity, adequate T cell infiltration and migration to solid tumors and T cell proliferation and persistence across the physical and biochemical barriers of solid tumors. In this review, we focus on the primary challenges and strategies to design safe and effective CAR T cells, including using novel cutting-edge technologies for CAR and vector designs to increase both the safety and efficacy, further T cell modification to overcome the tumor-associated immune suppression, and using gene editing technologies to generate universal CAR T cells. All these efforts promote the development and evolution of CAR T cell therapy and move toward our ultimate goal-curing cancer with high safety, high efficacy, and low cost.
		                        		
		                        		
		                        		
		                        			Cell Movement
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Cell Proliferation
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Immunotherapy, Adoptive
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Lymphocyte Activation
		                        			;
		                        		
		                        			Lymphocytes, Tumor-Infiltrating
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			transplantation
		                        			;
		                        		
		                        			Neoplasms
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			pathology
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			Patient Safety
		                        			;
		                        		
		                        			Receptors, Antigen, T-Cell
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Recombinant Fusion Proteins
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Single-Chain Antibodies
		                        			;
		                        		
		                        			chemistry
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			T-Lymphocytes
		                        			;
		                        		
		                        			cytology
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			transplantation
		                        			;
		                        		
		                        			Treatment Outcome
		                        			
		                        		
		                        	
10.Immune Response of Recombinant Pseudorabies Virus rPRV-VP2 Expressing VP2 Gene of Porcine Parvovirus in Mice.
Pengfei FU ; Xinlong PAN ; Qiao HAN ; Xingwu YANG ; Qianlei ZHU ; Xiaoqing GUO ; Yu ZHANG ; Hongying CHEN
Chinese Journal of Virology 2016;32(2):195-202
		                        		
		                        			
		                        			In order to develop a combined live vaccine that will be used to prevent against porcine parvovirus (PPV) and Pseudorabies virus (PRV) infection, the VP2 gene of PPV was inserted into the transfer vector plasmid pG to produce the recombinant plasmid pGVP2. The plasmid pGVP2 and the genome of PRV HB98 attenuated vaccine were transfected by using lipofectamine into swine testis cells for the homologous recombination. The recombinant virus rPRV-VP2 was purified by selection of green fluorescence plaques for five cycles. 6-week-old female Kunming mice were immunized intramuscularly with attenuated PRV parent HB98 strain, commercial inactivated vaccine against PPV, recombinant virus, DMEM culture solution. The injections were repeated with an equivalent dose after 2 weeks in all of the groups, and then challenged with the virulent PRV NY strain at 7 weeks after the first immunization. The recombinant virus rPRV-VP2 was successfully generated, and the recombinant virus could effectively elicite anti-PPV and PRV antibody and significant cellular immune response as indicated by anti-PPV ELISA and HI, PRV-neutralizing assay and flow cytometry. The challenge assay indicated that recombinant virus could protect the mice against the virulent PRV challenge. These results demonstrated that the recombinant virus can be a candidate recombinant vaccine strain for the prevention of PRV and PPV.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Antibodies, Viral
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Antigens, Viral
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Capsid Proteins
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Female
		                        			;
		                        		
		                        			Gene Expression
		                        			;
		                        		
		                        			Genetic Vectors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Herpesvirus 1, Suid
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Mice
		                        			;
		                        		
		                        			Parvovirus, Porcine
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			Swine
		                        			;
		                        		
		                        			Swine Diseases
		                        			;
		                        		
		                        			immunology
		                        			;
		                        		
		                        			prevention & control
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Viral Vaccines
		                        			;
		                        		
		                        			administration & dosage
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			immunology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail