1.Preimplantation genetic testing for monogenic/single gene disorders in a family with Molybdenum co-factor deficiency.
Zhan LI ; Hong ZHOU ; Jinhui SHU ; Caizhu WANG ; Peng HUANG
Chinese Journal of Medical Genetics 2023;40(2):143-147
OBJECTIVE:
To carry out preimplantation genetic testing for monogenic/single gene disorders (PGT-M) for a Chinese family affected with Molybdenum co-factor deficiency due to pathogenic variant of MOCS2 gene.
METHODS:
A family with molybdenum co-factor deficiency who attended to the Maternal and Child Health Care Hospital of Guangxi Zhuang Autonomous Region in April 2020 was selected as the research subject. Trophoblast cells were biopsied from blastocysts fertilized by intracytoplasmic sperm injection. Embryos carrying the MOCS2 gene variant and chromosome copy number variation (CNV) of more than 4 Mb were detected by single-cell whole genome amplification, high-throughput sequencing and single nucleotide polymorphism typing. Embryos without or carrying the heterozygous variant and without abnormal chromosome CNV were transplanted. During mid-pregnancy, amniotic fluid sample was collected for prenatal diagnosis to verify the results of PGT-M.
RESULTS:
Eleven oocytes were obtained, among which three blastocysts were formed through culturing. Results of genetic testing suggested that one embryo was heterozygous for the maternally derived MOCS2 gene variant and without chromosomal CNV. Following embryo transfer, intrauterine singleton pregnancy was attained. Prenatal diagnosis by amniocentesis at 18 weeks of gestation revealed that the MOCS2 gene variant and chromosomal analysis results were both consistent with that of PGT-M, and a healthy male infant was born at 37+5 weeks of gestation.
CONCLUSION
PGT-M has helped the couple carrying the MOCS2 gene variant to have a healthy offspring, and may become an important method for couples carrying other pathogenic genetic variants.
Female
;
Humans
;
Pregnancy
;
Aneuploidy
;
China
;
DNA Copy Number Variations
;
Genetic Testing/methods*
;
Preimplantation Diagnosis/methods*
;
Metal Metabolism, Inborn Errors/genetics*
2.Progress of research on chromosomal mosaicism embryos.
Zhixin HU ; Kexin CHEN ; Yonggang LI ; Jiacong YAN
Chinese Journal of Medical Genetics 2023;40(5):618-623
Chromosomal mosaicism (CM) is a common phenomenon in preimplantation genetic testing (PGT). In embryos with CM, genetic contents of trophoblastic ectodermal (TE) cells may be different from that of the inner cell mass (ICM) which will develop into the fetus. Embryos with low mosaic proportion could give rise to healthy live births after transplantation, but are accompanied with high pregnancy risks such as high abortion rate. In order to provide a more comprehensive understanding for CM embryos, this article has systematically summarized the recent progress of research on the definition, mechanism, classification, PGT techniques, self-correction mechanism, transplantation outcome and treatment principles for CM embryos.
Pregnancy
;
Female
;
Humans
;
Preimplantation Diagnosis/methods*
;
Mosaicism
;
Aneuploidy
;
Genetic Testing/methods*
;
Blastocyst
3.A prospective study of genetic screening of 2 060 neonates by high-throughput sequencing.
Danyan ZHUANG ; Fei WANG ; Shuxia DING ; Zhoushu ZHENG ; Qi YU ; Lanqiu LYU ; Shuni SUN ; Rulai YANG ; Wenwen QUE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(6):641-647
OBJECTIVE:
To assess the value of genetic screening by high-throughput sequencing (HTS) for the early diagnosis of neonatal diseases.
METHODS:
A total of 2 060 neonates born at Ningbo Women and Children's Hospital from March to September 2021 were selected as the study subjects. All neonates had undergone conventional tandem mass spectrometry metabolite analysis and fluorescent immunoassay analysis. HTS was carried out to detect the definite pathogenic variant sites with high-frequency of 135 disease-related genes. Candidate variants were verified by Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 2 060 newborns, 31 were diagnosed with genetic diseases, 557 were found to be carriers, and 1 472 were negative. Among the 31 neonates, 5 had G6PD, 19 had hereditary non-syndromic deafness due to variants of GJB2, GJB3 and MT-RNR1 genes, 2 had PAH gene variants, 1 had GAA gene variants, 1 had SMN1 gene variants, 2 had MTTL1 gene variants, and 1 had GH1 gene variants. Clinically, 1 child had Spinal muscular atrophy (SMA), 1 had Glycogen storage disease II, 2 had congenital deafness, and 5 had G6PD deficiency. One mother was diagnosed with SMA. No patient was detected by conventional tandem mass spectrometry. Conventional fluorescence immunoassay had revealed 5 cases of G6PD deficiency (all positive by genetic screening) and 2 cases of hypothyroidism (identified as carriers). The most common variants identified in this region have involved DUOX2 (3.93%), ATP7B (2.48%), SLC26A4 (2.38%), GJB2 (2.33%), PAH (2.09%) and SLC22A5 genes (2.09%).
CONCLUSION
Neonatal genetic screening has a wide range of detection and high detection rate, which can significantly improve the efficacy of newborn screening when combined with conventional screening and facilitate secondary prevention for the affected children, diagnosis of family members and genetic counseling for the carriers.
Child
;
Infant, Newborn
;
Humans
;
Female
;
Prospective Studies
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Glucosephosphate Dehydrogenase Deficiency
;
Mutation
;
Sulfate Transporters/genetics*
;
DNA Mutational Analysis
;
Genetic Testing/methods*
;
Deafness/genetics*
;
Neonatal Screening/methods*
;
Hearing Loss, Sensorineural/genetics*
;
High-Throughput Nucleotide Sequencing
;
Solute Carrier Family 22 Member 5/genetics*
4.Results of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
Hongqin HE ; Li SU ; Jia XU ; Yiwen WANG ; Yarong WANG ; Cui GUO ; Dandan LINGHU
Chinese Journal of Medical Genetics 2023;40(7):815-820
OBJECTIVE:
To analyze the clinical significance of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
METHODS:
Results of audiological examinations, including transient evoked otoacoustic emission and automatic discriminative auditory brainstem evoked potentials, for 6 723 newborns born in Yuncheng area from January 1, 2021 to December 31, 2021, were retrospectively analyzed. Those who failed one of the tests were considered to have failed the examination. A deafness-related gene testing kit was used to detect 15 hot spot variants of common deafness-associated genes in China including GJB2, SLC26A4, GJB3, and mtDNA12S rRNA. Neonates who had passed the audiological examinations and those who had not were compared using a chi-square test.
RESULTS:
Among the 6 723 neonates, 363 (5.40%) were found to carry variants. These have included 166 cases (2.47%) with GJB2 gene variants, 136 cases (2.03%) with SLC26A4 gene variants, 26 cases (0.39%) with mitochondrial 12S rRNA gene variants, and 33 cases (0.49%) with GJB3 gene variants. Among the 6 723 neonates, 267 had failed initial hearing screening, among which 244 had accepted a re-examination, for which 14 cases (5.73%) had failed again. This has yielded an approximate prevalence of hearing disorder of 0.21% (14/6 723). Among 230 newborns who had passed the re-examination, 10 (4.34%) were found to have carried a variant. By contrast, 4 out of the 14 neonates (28.57%) who had failed the re-examination had carried a variant, and there was a significant difference between the two groups (P < 0.05).
CONCLUSION
Genetic screening can provide an effective supplement to newborn hearing screening, and the combined screening can provide a best model for the prevention of hearing loss, which can enable early detection of deafness risks, targeted prevention measures, and genetic counseling to provide accurate prognosis for the newborns.
Infant, Newborn
;
Humans
;
Connexins/genetics*
;
Retrospective Studies
;
Deafness/genetics*
;
Connexin 26/genetics*
;
Neonatal Screening/methods*
;
Mutation
;
Genetic Testing/methods*
;
China/epidemiology*
;
Hearing
;
DNA Mutational Analysis
5.Infant glycogen storage disease type Ⅳ: a clinicopathological and genetic characteristics analysis of five cases.
Chinese Journal of Pathology 2023;52(12):1255-1260
Objective: To investigate the clinical pathology and gene mutation characteristics of patients with glycogen storage disease type Ⅳ (GSD Ⅳ). Methods: The clinical data, liver histopathology and ultrastructural morphology, and gene sequencing results of 5 GSD Ⅳ cases diagnosed in the Children's Hospital Affiliated to Shanghai Jiaotong University School of Medicine and the Children's Hospital of Fudan University from January 2015 to February 2022 were collected and analyzed retrospectively. Results: Among the 5 cases, 3 were male and 2 were female, ranging in age from 4 months to 1 year and 9 months. The clinical manifestations included fever, hepatosplenomegaly, liver insufficiency, growth retardation and hypotonia. Four cases had liver biopsy showing ground-glass-like changes in hepatocytes with intracytoplasmic inclusion bodies and varying degrees of fibrosis. Liver electron microscopy in 2 cases showed that the level of glycogen increased to varying degrees, and the cytoplasm was filled with low electron density substances. Genetic testing revealed that 3 cases had compound heterozygous variants in GBE1 gene; 1 case had a single pathogenic variant in GBE1 gene; and 1 case was deceased with no genetic testing, but each parent was tested for a heterozygous variant in the GBE1 gene. A total of 9 GBE1 gene mutations were detected, 3 of which were reported mutations and 6 novel mutations. One case died of liver cirrhosis, and 1 case underwent autologous liver transplantation. After transplantation, the liver function basically returned to normal, and the growth and development improved; the other 3 cases were managed through diet control and symptomatic treatment. Conclusions: CSD Ⅳ is an extremely rare inherited metabolic disease caused by GBE1 gene mutation, often presenting with hepatic and neuromuscular disorders, with heterogeneous clinical manifestations. The diagnosis mainly depends on histopathology and a pedigree gene analysis.
Infant
;
Child
;
Humans
;
Male
;
Female
;
Glycogen Storage Disease Type IV/pathology*
;
Retrospective Studies
;
China
;
Mutation
;
Genetic Testing/methods*
6.A family with clustered Lynch syndrome: a case report.
Xiu Jun ZHU ; Lin Er CAI ; Jing XIAO
Journal of Southern Medical University 2022;42(8):1263-1266
Lynch syndrome (LS) is an autosomal dominant hereditary disease caused by deletion of such DNA mismatch repair (MMR) genes as MLH1, MSH2, MSH6, and PMS2. The functional loss of MMR genes results in instability of the highly repetitive DNA sequence, and may eventually leads to tumor occurrence. Here we report a case of LS- related endometrial cancer in a clustered LS family identified by genetic counseling and genetic testing. For patients with a family history of LSrelated tumors, the diagnosis of LS should be considered, and immunohistochemical testing of MMR and genetic testing for LS should be performed. A definite diagnosis of LS has important clinical significance for individuals and family members, and risk screening and preventive measures can minimize the overall risk of developing LS-related cancers.
Colorectal Neoplasms, Hereditary Nonpolyposis/pathology*
;
DNA Mismatch Repair
;
Endometrial Neoplasms/pathology*
;
Female
;
Genetic Testing/methods*
;
Humans
7.Influence of gender of reciprocal translocation carriers on the occurrence of embryonic chromosomal abnormalities.
Jun WANG ; Xiyi WANG ; Xingqing GOU ; Ying JU ; Hengde ZHANG ; Xiaohong WANG
Chinese Journal of Medical Genetics 2022;39(9):958-962
OBJECTIVE:
To explore the influence of gender of chromosomal translocation carriers on the occurrence of embryonic chromosomal aberrations.
METHODS:
A retrospective study was carried out. Data were collected from 235 couples carrying reciprocal translocations (1163 blastocysts) and 70 couples carrying Robertsonian translocations (351 blastocysts). The preimplantation genetic testing for structural rearrangement (PGT-SR) analysis of 1514 blastocysts were completed through next generation sequencing (NGS).
RESULTS:
After adjusting the confounding factors such as female age, AMH, ovarian stimulation regimen, and Gn dosage, the results showed that the risk for blastocyst chromosomal abnormalities was 0.41 [OR(95%CI), 1.41(1.06, 1.87), P < 0.05] times higher in female reciprocal translocation carriers and 1.02 [OR(95%CI), 2.02 (1.20, 3.40), P < 0.01] times higher in female Robertsonian translocation carriers compared with male carriers, respectively. Compared with male carriers, the risk of blastocyst chromosomal abnormalities was increased by 0.67 times [OR(95%CI), 1.67 (1.10, 2.56), P < 0.05] in female reciprocal translocation carriers over 30 years old and 1.06 times [OR(95%CI), 2.06 (1.02, 4.15), P = 0.0434, P < 0.05] in female Robertsonian translocation carriers between 25 and 30 years old.
CONCLUSION
Compared with male carriers, female carriers of reciprocal or Robertsonian translocations have a higher risk for producing embryos with chromosomal abnormalities, and their age may also be a risk factor.
Adult
;
Blastocyst
;
Chromosome Aberrations
;
Female
;
Genetic Testing/methods*
;
Humans
;
Male
;
Pregnancy
;
Preimplantation Diagnosis/methods*
;
Retrospective Studies
;
Translocation, Genetic
8.Genetic analysis of a child with glycogen storage disease type IXa due to a novel variant in PHKA2 gene.
Ganye ZHAO ; Wenzhe SI ; Xuechao ZHAO ; Li'na LIU ; Conghui WANG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2022;39(9):988-991
OBJECTIVE:
To explore the genetic etiology of a patient with glycogen storage diseases.
METHODS:
Clinical data of child and his parents were collected. The genes associated with glycogen storage diseases were subjected to high-throughput sequencing to screen the variants. Candidate variant was validated by Sanger sequencing. Pathogenicity of the variant was predicted by bioinformatic analysis.
RESULTS:
High-throughput sequencing results showed that the boy has carried a hemizygous c.749C>T (p.S250L) variant of the PHKA2 gene. Sanger sequencing verified the results and confirmed that it was inherited from his mother. This variant was unreported previously and predicted to be pathogenic by bioinformatic analysis.
CONCLUSION
The patient was diagnosed with glycogen storage disease type IXa due to a novel c.749C>T (p.S250L) hemizygous variant of the PHKA2 gene. High-throughput sequencing can facilitate timely and accurate differential diagnosis of glycogen storage disease type IXa.
Child
;
Family
;
Genetic Testing
;
Glycogen Storage Disease/pathology*
;
High-Throughput Nucleotide Sequencing/methods*
;
Humans
;
Male
;
Mutation
;
Phosphorylase Kinase/genetics*
9.Research Progress and Forensic Application of Postmortem Genetic Testing in Hereditary Cardiac Diseases.
Yi-Ming DONG ; Chen-Teng YANG ; Guo-Zhong ZHANG ; Bin CONG
Journal of Forensic Medicine 2022;38(3):374-384
Hereditary cardiac disease accounts for a large proportion of sudden cardiac death (SCD) in young adults. Hereditary cardiac disease can be divided into hereditary structural heart disease and channelopathies. Hereditary structural heart disease mainly includes hereditary cardiomyopathy, which results in arhythmia, heart failure and SCD. The autopsy and histopathological examinations of SCD caused by channelopathies lack characteristic morphological manifestations. Therefore, how to determine the cause of death in the process of examination has become one of the urgent problems to be solved in forensic identification. Based on the review of recent domestic and foreign research results on channelopathies and hereditary cardiomyopathy, this paper systematically reviews the pathogenesis and molecular genetics of channelopathies and hereditary cardiomyopathy, and discusses the application of postmortem genetic testing in forensic identification, to provide reference for forensic pathology research and identification of SCD.
Autopsy/methods*
;
Channelopathies/genetics*
;
Death, Sudden, Cardiac/pathology*
;
Genetic Testing
;
Heart Diseases/genetics*
;
Humans
;
Young Adult
10.Application of next generation sequencing for preimplantation genetic test of 71 couples with one partner carrying a reciprocal or Robertsonian translocation.
Yan YANG ; Yanqiu LIU ; Pengpeng MA ; Jia CHEN ; Tao DING
Chinese Journal of Medical Genetics 2020;37(5):563-566
OBJECTIVE:
To assess the value of preimplantation genetic test (PGT) based on next generation sequencing (NGS) for achieving pregnancy for 71 couples with one partner carrying a reciprocal or Robertsonian translocation.
METHODS:
Following blastocyst biopsy, whole genome of single cell was amplified, and PGT was performed by NGS. The subjects included 60 couples with one partner carrying a reciprocal translocation and 11 with one partner carrying a Robertsonian translocation. The results of PGT, implantation and prenatal diagnosis for all of the couples were analyzed.
RESULTS:
In total 301 embryos were obtained for the 71 couples through 92 ovulation cycles, 287 (95.3%) of which were successfully diagnosed by NGS. Eighty-five euploidy embryos were identified for the reciprocal translocation carrier group. In 18 cycles, no euploid embryo was obtained. Cancellation rate for the cycles was 19.5%. For reciprocal translocation carrier group and Robertsonian translocation carrier group, the rates for implantation, early abortion, and clinical pregnancy were 89.3% (42/47), 25.5% (12/47), 63.8% (30/47), and 88.8% (8/9), 22.2% (2/9), and 66.6% (6/9), respectively. The result of prenatal diagnosis was consistent with the that of PGT.
CONCLUSION
PGT based on NGS can effectively identify euploid embryos and reduce recurrent abortions and termination of pregnancies, achieving a satisfactory rate for clinical pregnancy.
Female
;
Fertilization in Vitro
;
Genetic Testing
;
High-Throughput Nucleotide Sequencing
;
Humans
;
Pregnancy
;
Preimplantation Diagnosis
;
methods
;
Translocation, Genetic

Result Analysis
Print
Save
E-mail