1.A prospective study of genetic screening of 2 060 neonates by high-throughput sequencing.
Danyan ZHUANG ; Fei WANG ; Shuxia DING ; Zhoushu ZHENG ; Qi YU ; Lanqiu LYU ; Shuni SUN ; Rulai YANG ; Wenwen QUE ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(6):641-647
OBJECTIVE:
To assess the value of genetic screening by high-throughput sequencing (HTS) for the early diagnosis of neonatal diseases.
METHODS:
A total of 2 060 neonates born at Ningbo Women and Children's Hospital from March to September 2021 were selected as the study subjects. All neonates had undergone conventional tandem mass spectrometry metabolite analysis and fluorescent immunoassay analysis. HTS was carried out to detect the definite pathogenic variant sites with high-frequency of 135 disease-related genes. Candidate variants were verified by Sanger sequencing or multiplex ligation-dependent probe amplification (MLPA).
RESULTS:
Among the 2 060 newborns, 31 were diagnosed with genetic diseases, 557 were found to be carriers, and 1 472 were negative. Among the 31 neonates, 5 had G6PD, 19 had hereditary non-syndromic deafness due to variants of GJB2, GJB3 and MT-RNR1 genes, 2 had PAH gene variants, 1 had GAA gene variants, 1 had SMN1 gene variants, 2 had MTTL1 gene variants, and 1 had GH1 gene variants. Clinically, 1 child had Spinal muscular atrophy (SMA), 1 had Glycogen storage disease II, 2 had congenital deafness, and 5 had G6PD deficiency. One mother was diagnosed with SMA. No patient was detected by conventional tandem mass spectrometry. Conventional fluorescence immunoassay had revealed 5 cases of G6PD deficiency (all positive by genetic screening) and 2 cases of hypothyroidism (identified as carriers). The most common variants identified in this region have involved DUOX2 (3.93%), ATP7B (2.48%), SLC26A4 (2.38%), GJB2 (2.33%), PAH (2.09%) and SLC22A5 genes (2.09%).
CONCLUSION
Neonatal genetic screening has a wide range of detection and high detection rate, which can significantly improve the efficacy of newborn screening when combined with conventional screening and facilitate secondary prevention for the affected children, diagnosis of family members and genetic counseling for the carriers.
Child
;
Infant, Newborn
;
Humans
;
Female
;
Prospective Studies
;
Connexins/genetics*
;
Connexin 26/genetics*
;
Glucosephosphate Dehydrogenase Deficiency
;
Mutation
;
Sulfate Transporters/genetics*
;
DNA Mutational Analysis
;
Genetic Testing/methods*
;
Deafness/genetics*
;
Neonatal Screening/methods*
;
Hearing Loss, Sensorineural/genetics*
;
High-Throughput Nucleotide Sequencing
;
Solute Carrier Family 22 Member 5/genetics*
2.Results of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
Hongqin HE ; Li SU ; Jia XU ; Yiwen WANG ; Yarong WANG ; Cui GUO ; Dandan LINGHU
Chinese Journal of Medical Genetics 2023;40(7):815-820
OBJECTIVE:
To analyze the clinical significance of combined newborn hearing and deafness gene screening in Yuncheng area of Shanxi Province.
METHODS:
Results of audiological examinations, including transient evoked otoacoustic emission and automatic discriminative auditory brainstem evoked potentials, for 6 723 newborns born in Yuncheng area from January 1, 2021 to December 31, 2021, were retrospectively analyzed. Those who failed one of the tests were considered to have failed the examination. A deafness-related gene testing kit was used to detect 15 hot spot variants of common deafness-associated genes in China including GJB2, SLC26A4, GJB3, and mtDNA12S rRNA. Neonates who had passed the audiological examinations and those who had not were compared using a chi-square test.
RESULTS:
Among the 6 723 neonates, 363 (5.40%) were found to carry variants. These have included 166 cases (2.47%) with GJB2 gene variants, 136 cases (2.03%) with SLC26A4 gene variants, 26 cases (0.39%) with mitochondrial 12S rRNA gene variants, and 33 cases (0.49%) with GJB3 gene variants. Among the 6 723 neonates, 267 had failed initial hearing screening, among which 244 had accepted a re-examination, for which 14 cases (5.73%) had failed again. This has yielded an approximate prevalence of hearing disorder of 0.21% (14/6 723). Among 230 newborns who had passed the re-examination, 10 (4.34%) were found to have carried a variant. By contrast, 4 out of the 14 neonates (28.57%) who had failed the re-examination had carried a variant, and there was a significant difference between the two groups (P < 0.05).
CONCLUSION
Genetic screening can provide an effective supplement to newborn hearing screening, and the combined screening can provide a best model for the prevention of hearing loss, which can enable early detection of deafness risks, targeted prevention measures, and genetic counseling to provide accurate prognosis for the newborns.
Infant, Newborn
;
Humans
;
Connexins/genetics*
;
Retrospective Studies
;
Deafness/genetics*
;
Connexin 26/genetics*
;
Neonatal Screening/methods*
;
Mutation
;
Genetic Testing/methods*
;
China/epidemiology*
;
Hearing
;
DNA Mutational Analysis
3.Application of droplet digital PCR for non-invasive prenatal diagnosis of single gene disease in two families.
Peiwen XU ; Yang ZOU ; Jie LI ; Sexin HUANG ; Ming GAO ; Ranran KANG ; Hongqiang XIE ; Lijuan WANG ; Junhao YAN ; Yuan GAO
Chinese Journal of Medical Genetics 2018;35(2):224-227
OBJECTIVETo assess the value of droplet digital PCR (ddPCR) for non-invasive prenatal diagnosis of single gene disease in two families.
METHODSPaternal mutation in cell-free DNA derived from the maternal blood and amniotic fluid DNA was detected by ddPCR. Suspected mutation in the amniotic fluid DNA was verified with Sanger sequencing.
RESULTSThe result of ddPCR and Sanger sequencing indicated that the fetuses have carried pathogenic mutations from the paternal side in both families.
CONCLUSIONDroplet digital PCR can accurately detect paternal mutation carried by the fetus, and it is sensitive and reliable for analyzing trace samples. This method may be applied for the diagnosis of single gene diseases caused by paternal mutation using peripheral blood sample derived from the mother.
Fathers ; Female ; Genetic Diseases, Inborn ; diagnosis ; Humans ; Male ; Maternal Serum Screening Tests ; Mutation ; Polymerase Chain Reaction ; methods ; Prenatal Diagnosis ; methods ; Sequence Analysis, DNA
4.Korean physicians' attitudes toward the prenatal screening for fetal aneuploidy and implementation of non-invasive prenatal testing with cell-free fetal DNA.
Soo Hyun KIM ; Kun Woo KIM ; You Jung HAN ; Seung Mi LEE ; Mi Young LEE ; Jae Yoon SHIM ; Geum Joon CHO ; Joon Ho LEE ; Soo young OH ; Han Sung KWON ; Dong Hyun CHA ; Hyun Mee RYU
Journal of Genetic Medicine 2018;15(2):72-78
PURPOSE: Physicians' attitudes may have a strong influence on women's decision regarding prenatal screening options. The aim of this study is to assess the physicians' attitudes toward prenatal screening for fetal aneuploidy including non-invasive prenatal testing (NIPT) in South Korea. MATERIALS AND METHODS: Questionnaires were distributed and collected at several obstetrics-gynecological conferences and meetings. The questionnaire included 31 multiple choice and 5 fill-in-the-blank questions. Seven questions requested physicians' demographic information, 17 questions requested information about the NIPT with cell-free fetal DNA, and 12 questions requested information about general prenatal screening practices. RESULTS: Of the 203 obstetricians that completed the survey. In contrast with professional guidelines recommending the universal offering of aneuploidy screening, only 53.7% answered that prenatal aneuploidy testing (screening and/or invasive diagnostic testing) should be offered to all pregnant women. Physicians tended to have positive attitudes toward the clinical application of NIPT as both primary and secondary screening methods for patients at high-risk for fetal trisomy. However, for patients at average-risk for fetal trisomy, physicians tended to have positive attitudes only as a secondary screening method. Physicians with more knowledge about NIPT were found to tend to inform their patients that the detection rate of NIPT is higher. CONCLUSION: This is the first study to investigate expert opinion on prenatal screening in South Korea. Education of physicians is essential to ensure responsible patient counseling, informed consent, and appropriate management after NIPT.
Aneuploidy*
;
Congresses as Topic
;
Counseling
;
DNA*
;
Education
;
Expert Testimony
;
Female
;
Genetic Testing
;
Humans
;
Informed Consent
;
Korea
;
Mass Screening
;
Methods
;
Practice Patterns, Physicians'
;
Pregnant Women
;
Prenatal Care
;
Prenatal Diagnosis*
;
Trisomy
5.Screening of SHOX gene sequence variants in Saudi Arabian children with idiopathic short stature.
Abdulla A ALHARTHI ; Ehab I EL-HALLOUS ; Iman M TALAAT ; Hamed A ALGHAMDI ; Matar I ALMALKI ; Ahmed GABER
Korean Journal of Pediatrics 2017;60(10):327-332
PURPOSE: Short stature affects approximately 2%–3% of children, representing one of the most frequent disorders for which clinical attention is sought during childhood. Despite assumed genetic heterogeneity, mutations or deletions in the short stature homeobox-containing gene (SHOX) are frequently detected in subjects with short stature. Idiopathic short stature (ISS) refers to patients with short stature for various unknown reasons. The goal of this study was to screen all the exons of SHOX to identify related mutations. METHODS: We screened all the exons of SHOX for mutations analysis in 105 ISS children patients (57 girls and 48 boys) living in Taif governorate, KSA using a direct DNA sequencing method. Height, arm span, and sitting height were recorded, and subischial leg length was calculated. RESULTS: A total of 30 of 105 ISS patients (28%) contained six polymorphic variants in exons 1, 2, 4, and 6. One mutation was found in the DNA domain binding region of exon 4. Three of these polymorphic variants were novel, while the others were reported previously. There were no significant differences in anthropometric measures in ISS patients with and without identifiable polymorphic variants in SHOX. CONCLUSION: In Saudi Arabia ISS patients, rather than SHOX, it is possible that new genes are involved in longitudinal growth. Additional molecular analysis is required to diagnose and understand the etiology of this disease.
Arm
;
Child*
;
DNA
;
Exons
;
Female
;
Genetic Heterogeneity
;
Humans
;
Leg
;
Mass Screening*
;
Methods
;
Saudi Arabia
;
Sequence Analysis, DNA
6.Efficient Strategy to Identify Gene-Gene Interactions and Its Application to Type 2 Diabetes.
Genomics & Informatics 2016;14(4):160-165
Over the past decade, the detection of gene-gene interactions has become more and more popular in the field of genome-wide association studies (GWASs). The goal of the GWAS is to identify genetic susceptibility to complex diseases by assaying and analyzing hundreds of thousands of single-nucleotide polymorphisms. However, such tests are computationally demanding and methodologically challenging. Recently, a simple but powerful method, named “BOolean Operation-based Screening and Testing” (BOOST), was proposed for genome-wide gene-gene interaction analyses. BOOST was designed with a Boolean representation of genotype data and is approximately equivalent to the log-linear model. It is extremely fast, and genome-wide gene-gene interaction analyses can be completed within a few hours. However, BOOST can not adjust for covariate effects, and its type-1 error control is not correct. Thus, we considered two-step approaches for gene-gene interaction analyses. First, we selected gene-gene interactions with BOOST and applied logistic regression with covariate adjustments to select gene-gene interactions. We applied the two-step approach to type 2 diabetes (T2D) in the Korea Association Resource (KARE) cohort and identified some promising pairs of single-nucleotide polymorphisms associated with T2D.
Cohort Studies
;
Diabetes Mellitus, Type 2
;
Genetic Predisposition to Disease
;
Genome-Wide Association Study
;
Genotype
;
Korea
;
Linear Models
;
Logistic Models
;
Mass Screening
;
Methods
7.Establishment and application of a high-throughput drug screening model based on COL1A1 promoter for anti-liver fibrosis.
Shuang-Shuang ZHAO ; Ju-Xian WANG ; Yu-Cheng WANG ; Rong-Guang SHAO ; Hong-Wei HE
Acta Pharmaceutica Sinica 2015;50(2):169-173
For screening the potential drugs as anti-liver fibrosis candidates, we established a high- throughput drug screening cell model based on COL1A1 promoter. The activity of COL1A1 promoter and luciferase reporter gene can be elevated by TGF-β1, and inhibited by candidate drugs. We constructed a recombined plasmid with COL1A1 promoter and luciferase reporter gene pGL4.17, the activity of COL1A1 promoter was reflected by fluorescence intensity. COL1A1 promoter activity was detected by Dual-Luciferase Reporter Assay System, it came that the relative luciferase activity of COL1A1 promoter was 15.98 times higher than that of control group induced by TGF-β1, showing the recombined plasmid could be used in cell model. The recombined plasmid was transfected into human hepatic stellate cells LX2, detected the effect of potential drugs, and obtained a stable expression system through stable transfection and monoclonal cell culture. A sample which could reduce COL1A1 promoter activity signally by our cell model, decreased collagen I mRNA and protein expression detected by real-time RT-PCR and Western blotting. It indicates this novel cell model can be used in high-throughput drug screening of potential anti-liver fibrosis drugs.
Collagen Type I
;
genetics
;
Drug Evaluation, Preclinical
;
methods
;
Genes, Reporter
;
Hepatic Stellate Cells
;
High-Throughput Screening Assays
;
Humans
;
Liver Cirrhosis
;
drug therapy
;
Luciferases
;
Plasmids
;
Promoter Regions, Genetic
;
RNA, Messenger
;
Transfection
;
Transforming Growth Factor beta1
;
pharmacology
8.Combined hearing and deafness gene mutation screening of 11,046 Chinese newborns.
Xuejing SUN ; Zuoming XI ; Jing ZHANG ; Baoyan LIU ; Xinli XING ; Xin HUANG ; Qing ZHAO
Chinese Journal of Medical Genetics 2015;32(6):766-770
OBJECTIVETo evaluate the efficacy of combined newborn hearing screening and deafness-related mutation screening.
METHODSEleven thousand and forty-six newborn babies were screened with otoacoustic emission, automatic auditory brainstem response and genetic testing using a standard protocol. Common mutations of three deafness-related genes have included GJB2 (c.235delC, c.299-300delAT), mtDNA 12srRNA (c.1494C>T, c.1555A>G) and SLC26A4 (c.2168A>G, c.IVS7-2A>G).
RESULTSThe detection rate for hearing loss in the first-step screening was 0.81% (90/11,046). 513 individuals were found to carry one or two mutant alleles, which gave a carrier rate of 4.64% (513/11,046). Five hundred and eighty-four newborns were positive for hearing screening and genetic screening. Among these, 19 have failed both tests, 71 have failed hearing screening, and 494 have failed genetic screening. The combined hearing and genetic screening has given a positive rate of 5.29%.
CONCLUSIONNeither hearing screening nor genetic screening is sufficient to identify individuals susceptible to auditory disorders. Combined used of these methods can improve the rate of detection.
Asian Continental Ancestry Group ; genetics ; China ; Connexin 26 ; Connexins ; genetics ; DNA Mutational Analysis ; DNA, Mitochondrial ; chemistry ; genetics ; Deafness ; diagnosis ; ethnology ; genetics ; Gene Frequency ; Genetic Predisposition to Disease ; ethnology ; genetics ; Genetic Testing ; methods ; Genotype ; Hearing ; genetics ; Hearing Tests ; Humans ; Infant, Newborn ; Membrane Transport Proteins ; genetics ; Mutation ; Neonatal Screening ; methods ; Polymerase Chain Reaction ; RNA, Ribosomal ; genetics ; Reproducibility of Results ; Sensitivity and Specificity
10.Screening of common deafness gene mutations in 17 000 Chinese newborns from Chengdu based on microarray analysis.
Kangmo LYU ; Yehua XIONG ; Hao YU ; Ling ZOU ; Longrong RAN ; Deshun LIU ; Qin YIN ; Yingwen XU ; Xue FANG ; Zuling SONG ; Lijia HUANG ; Dayong TAN ; Zhiwei ZHANG
Chinese Journal of Medical Genetics 2014;31(5):547-552
OBJECTIVETo achieve early diagnosis for inheritable hearing loss and determine carrier rate of deafness causing gene mutations in order to provide information for premarital, prenatal and postnatal genetic counseling.
METHODSA total of 17 000 dried heel blood spots of normal newborns in Chengdu were collected with informed consent obtained from their parents. Genomic DNA was extracted from dried blood spots using Qiagen DNA extraction kits. Microarrays with 9 common mutation loci of 4 deafness-associated genes in Chinese population were used. Nine hot mutations including GJB2 (35delG, 176del16, 235delC and 299delAT), GJB3 (538C> T), SLC26A4 (IVS 7-2A> G, 2168A> G), and mitochondrial DNA 12S rRNA (1555A> G, 1494C> T) were detected by PCR amplification and microarray hybridization. Mutations detected by microarray were verified by Sanger DNA sequencing.
RESULTSOf the 17 000 new-borns, 542 neonates had mutations of the 4 genes. Heterozygous mutations of GJB2, at 235delC, 299delAT, and 176del16 were identified in 254, 55, and 15 newborns, respectively. Two newborns had homozygous mutation of GJB2, 235delC. Heterozygous mutations at 538C> T of GJB3, 2168A> G and IVS 7-2A> G of SLC26A4 were found in 23, 17 and 128 newborns, respectively. For mutation analysis of mitochondrial DNA 12S rRNA, 1494C> T and 1555A> G were homogeneous mutations in 4 and 42 neonates, respectively. In addition, 6 complexity mutations were detected, which demonstrated that one newborn had heterozygous mutations at GJB2 235delC and SLC26A4, IVS7-2A> G, one had heterozygous mutation GJB2 235delC and 12S rRNA homogeneous mutation, 1555 A> G, one heterozygous mutations at GJB2, 299delAT, and GJB3, 538C> T, one at GJB2, 299delAT and 12S rRNA, 1555 A> G, two at GJB2, 299delAT, and SLC26A4, IVS7-2A> G. All mutations as above were confirmed by DNA sequencing.
CONCLUSIONThe total mutation carrier rate of the 4 deafness genes is 3.19% in healthy newborns at Chengdu. Mutations of GJB2 and SLAC26A4 are major ones (86.5% of total). The mutation rate of mitochondrial DNA 12S rRNA is 2.71‰, which may have deafness induced by aminoglycoside antibiotics. Newborn screening for mutation of genes related to hereditary deafness plays an important role in the early detection and proper management for neonatal deafness as well as genetic counseling for premarital, prenatal and postnatal diagnosis.
Asian Continental Ancestry Group ; genetics ; Base Sequence ; China ; Connexin 26 ; Connexins ; genetics ; DNA Mutational Analysis ; DNA, Mitochondrial ; chemistry ; genetics ; Deafness ; diagnosis ; ethnology ; genetics ; Dried Blood Spot Testing ; Genetic Predisposition to Disease ; ethnology ; genetics ; Genetic Testing ; methods ; Humans ; Infant, Newborn ; Membrane Transport Proteins ; genetics ; Microarray Analysis ; methods ; Mutation ; Neonatal Screening ; methods ; RNA, Ribosomal ; genetics

Result Analysis
Print
Save
E-mail