1.Progress in engineering application of human adenovirus.
Yang ZHAO ; Qiwei ZHANG ; Xueshan XIA
Chinese Journal of Biotechnology 2020;36(7):1269-1276
Human adenoviruses are widespread causative agent that induces respiratory diseases, epidemic keratoconjunctivitis and other related diseases. Adenoviruses are commonly used in experimental and clinical areas. It is one of the most commonly used virus vectors in gene therapy, and it has attracted a lot of attention and has a high research potential in tumor gene therapy and virus oncolytic. Here, we summarize the biological characteristics, epidemiology and current application of adenovirus, in order to provide reference for engineering application of adenovirus.
Adenovirus Infections, Human
;
epidemiology
;
virology
;
Adenoviruses, Human
;
genetics
;
Genetic Engineering
;
methods
;
trends
;
Genetic Vectors
;
Humans
;
Oncolytic Virotherapy
;
trends
;
Oncolytic Viruses
;
genetics
;
Virus Replication
2.High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells.
Synat KANG ; Yanyan LI ; Yifeng BAO ; Yi LI
Frontiers of Medicine 2019;13(1):69-82
Cytokine-activated T cells (CATs) can be easily expanded and are widely applied to cancer immunotherapy. However, the good efficacy of CATs is rarely reported in clinical applications because CATs have no or very low antigen specificity. The low-efficacy problem can be resolved using T cell antigen receptor-engineered CAT (TCR-CAT). Herein, we demonstrate that NY-ESO-1 HLA-A*02:01-specific high-affinity TCR (HAT)-transduced CATs can specifically kill cancer cells with good efficacy. With low micromolar range dissociation equilibrium constants, HAT-transduced CATs showed good specificity with no off-target killing. Furthermore, the high-affinity TCR-CATs delivered significantly better activation and cytotoxicity than the equivalent TCR-engineered T cells (TCR-Ts) in terms of interferon-γ and granzyme B production and in vitro cancer cell killing ability. TCR-CAT may be a very good alternative to the expensive TCR-T, which is considered an effective personalized cyto-immunotherapy.
Cell Line, Tumor
;
Cytokines
;
metabolism
;
Cytotoxicity, Immunologic
;
Genetic Engineering
;
HLA-A2 Antigen
;
metabolism
;
Humans
;
Immunotherapy, Adoptive
;
methods
;
Lymphocyte Activation
;
Receptors, Antigen, T-Cell
;
genetics
;
immunology
;
T-Lymphocytes
;
immunology
3.Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury.
Frontiers of Medicine 2019;13(2):131-137
The inhibitory environment that surrounds the lesion site and the lack of intrinsic regenerative capacity of the adult mammalian central nervous system (CNS) impede the regrowth of injured axons and thereby the reestablishment of neural circuits required for functional recovery after spinal cord injuries (SCI). To circumvent these barriers, biomaterial scaffolds are applied to bridge the lesion gaps for the regrowing axons to follow, and, often by combining stem cell transplantation, to enable the local environment in the growth-supportive direction. Manipulations, such as the modulation of PTEN/mTOR pathways, can also enhance intrinsic CNS axon regrowth after injury. Given the complex pathophysiology of SCI, combining biomaterial scaffolds and genetic manipulation may provide synergistic effects and promote maximal axonal regrowth. Future directions will primarily focus on the translatability of these approaches and promote therapeutic avenues toward the functional rehabilitation of patients with SCIs.
Animals
;
Axons
;
physiology
;
Biocompatible Materials
;
Genetic Enhancement
;
methods
;
Humans
;
Nerve Regeneration
;
PTEN Phosphohydrolase
;
metabolism
;
Recovery of Function
;
Spinal Cord Injuries
;
physiopathology
;
Tissue Engineering
;
methods
;
Tissue Scaffolds
4.From Basic Research to Molecular Breeding - Chinese Scientists Play A Central Role in Boosting World Rice Production.
Genomics, Proteomics & Bioinformatics 2018;16(6):389-392
On November 18, 2018, the Future Science Prize Awarding Ceremony was held in Beijing. In the area of life science, Professors Jiayang Li, Longping Yuan, and Qifa Zhang shared the prize for their pioneering contributions in producing high-yield, superior-quality rice through systematic study of molecular mechanisms associated with specific rice features and application of novel approaches in rice breeding. The Future Science Prize is also touted as "China's Nobel Prize", fully affirming their achievements in rice basic research and breeding.
Awards and Prizes
;
China
;
DNA Shuffling
;
Genetic Engineering
;
methods
;
Oryza
;
genetics
;
growth & development
;
Plant Breeding
;
methods
;
Research
5.Genome Writing: Current Progress and Related Applications.
Yueqiang WANG ; Yue SHEN ; Ying GU ; Shida ZHU ; Ye YIN
Genomics, Proteomics & Bioinformatics 2018;16(1):10-16
The ultimate goal of synthetic biology is to build customized cells or organisms to meet specific industrial or medical needs. The most important part of the customized cell is a synthetic genome. Advanced genomic writing technologies are required to build such an artificial genome. Recently, the partially-completed synthetic yeast genome project represents a milestone in this field. In this mini review, we briefly introduce the techniques for de novo genome synthesis and genome editing. Furthermore, we summarize recent research progresses and highlight several applications in the synthetic genome field. Finally, we discuss current challenges and future prospects.
Animals
;
CRISPR-Cas Systems
;
Gene Editing
;
methods
;
Genetic Engineering
;
methods
;
Genome, Human
;
High-Throughput Nucleotide Sequencing
;
Humans
6.Markerless DNA deletion based on Red recombination and in vivo I-Sec I endonuclease cleavage in Escherichia coli chromosome.
Meiqin ZHU ; Jian YU ; Changlin ZHOU ; Hongqing FANG
Chinese Journal of Biotechnology 2016;32(1):114-126
Red-based recombineering has been widely used in Escherichia coli genome modification through electroporating PCR fragments into electrocompetent cells to replace target sequences. Some mutations in the PCR fragments may be brought into the homologous regions near the target. To solve this problem in markeless gene deletion we developed a novel method characterized with two-step recombination and a donor plasmid. First, generated by PCR a linear DNA cassette which comprises a I-Sec I site-containing marker gene and homologous arms was electroporated into cells for marker-substitution deletion of the target sequence. Second, after a donor plasmid carrying the I-Sec I site-containing fusion homologous arm was chemically transformed into the marker-containing cells, the fusion arms and the marker was simultaneously cleaved by I-Sec I endonuclease and the marker-free deletion was stimulated by double-strand break-mediated intermolecular recombination. Eleven nonessential regions in E. coli DH1 genome were sequentially deleted by our method, resulting in a 10.59% reduced genome size. These precise deletions were also verified by PCR sequencing and genome resequencing. Though no change in the growth rate on the minimal medium, we found the genome-reduced strains have some alteration in the acid resistance and for the synthesis of lycopene.
Chromosomes, Bacterial
;
genetics
;
DNA
;
Endonucleases
;
metabolism
;
Escherichia coli
;
genetics
;
Genetic Engineering
;
methods
;
Recombination, Genetic
;
Sequence Deletion
7.Optimization of 1,2,4-butanetriol synthetic pathway in Escherichia coli.
Lei SUN ; Fan YANG ; Taicheng ZHU ; Xinghua LI ; Hongbing SUN ; Yin LI ; Zhenghong XU ; Yanping ZHANG
Chinese Journal of Biotechnology 2016;32(1):51-63
1,2,4-Butanetriol (BT) is an important non-natural chemical with a variety of industrial applications. A recombinant Escherichia coli biosynthesizing BT from D-xylose was constructed by heterologously expressing xdh and mdlC, and knocking out competing pathway genes including xylA, xylB, yjhE, yagH and ycdW. To optimize BT synthesis pathway, the third catalytic step that catalyzes the decarboxylation reaction of 3-deoxy-D-glycero-pentulosonic acid was identified as a potential bottleneck. Consequently, 2-keto acid decarboxylases from three different microorganisms were screened, and the kivD gene from Lactococcus lactis was found to increase BT titer by 191%. The improved strain BW-025 reached a final BT titer of 2.38 g/L under optimized transformation conditions. Attempts on synthetic pathway optimization were also made by fine-tuning the expression levels of each enzyme involved in the whole pathway based on BW-025. As a result, an xdh overexpressed recombinant strain, BW-074 was finally generated, with 48.62% higher BT production than that of BW-025.
Butanols
;
metabolism
;
Escherichia coli
;
metabolism
;
Gene Knockout Techniques
;
Genetic Engineering
;
Industrial Microbiology
;
methods
;
Metabolic Networks and Pathways
9.Advances in genetic modification technologies.
Baixue ZHANG ; Qixin SUN ; Haifeng LI
Chinese Journal of Biotechnology 2015;31(8):1162-1174
Genetic modification technology is a new molecular tool for targeted genome modification. It includes zinc finger nucleases (ZFN) technology, transcription activator-like effector nucleases (TALEN) technology and clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) (CRISPR-Cas) nucleases technology. All of these nucleases create DNA double-strand breaks (DSB) at chromosomal targeted sites and induce cell endogenous mechanisms that are primarily repaired by the non-homologous end joining (NHEJ) or homologous recombination (HR) pathway, resulting in targeted endogenous gene knock-out or exogenous gene insertion. In recent years, genetic modification technologies have been successfully applied to bacteria, yeast, human cells, fruit fly, zebra fish, mouse, rat, livestock, cynomolgus monkey, Arabidopsis, rice, tobacco, maize, sorghum, wheat, barley and other organisms, showing its enormous advantage in gene editing field. Especially, the newly developed CRISPR-Cas9 system arose more attention because of its low cost, high effectiveness, simplicity and easiness. We reviewed the principles and the latest research progress of these three technologies, as well as prospect of future research and applications.
Animals
;
CRISPR-Cas Systems
;
DNA Breaks, Double-Stranded
;
Endonucleases
;
Genetic Engineering
;
methods
;
Humans
;
Mutagenesis, Insertional
;
Mutagenesis, Site-Directed
;
Plants
;
Zinc Fingers
10.Progress of new-generation genome editing mediated by engineered endonucleases.
Chinese Journal of Biotechnology 2015;31(6):917-928
Genome editing refers to the experimental methods to targeted modify specific loci in the genomic DNA sequence. In recent years, engineered endonucleases, including ZFN, TALEN and CRISPR/Cas, have been developed as a new-generation genome editing technique, and greatly improved the feasibility of gene function analyses, gene therapy, etc. Here, we briefly summarize the basic principle, developmental process and applications of this technology.
Clustered Regularly Interspaced Short Palindromic Repeats
;
Endonucleases
;
genetics
;
Genetic Engineering
;
methods
;
Genetic Therapy
;
Genome
;
Genomics

Result Analysis
Print
Save
E-mail