1.Construction, screening and immunogenicity of the recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2.
Renshuang ZHAO ; Yilong ZHU ; Chao SHANG ; Jicheng HAN ; Zirui LIU ; Zhiru XIU ; Shanzhi LI ; Yaru LI ; Xia YANG ; Xiao LI ; Ningyi JIN ; Xin JIN ; Yiquan LI
Chinese Journal of Cellular and Molecular Immunology 2024;40(1):19-25
Objective To construct a recombinant poxvirus vector vaccine, rVTTδTK-RBD, and to evaluate its safety and immunogenicity. Methods The receptor-binding domain (RBD) gene was synthesized with reference to the gene sequence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and was inserted into the polyclonal site of the self-constructed recombinant plasmid pSTKE, to construct the recombinant poxvirus shuttle vector pSTKE-RBD. This was then transfected into BHK-21 cells pre-infected with the vaccinia virus Tiantan strain (VTT). The recombinant poxvirus rVTTδTK-RBD was successfully obtained after several rounds of fluorescence phage screening. The effect of rVTTδTK-RBD on the body mass of BALB/c mice was detected after immunizing mice by intra-nasal vaccination. The levels of specific and neutralizing antibodies produced by rVTTδTK-RBD on BALB/c mice were analyzed after immunizing mice intramuscularly. The effect of rVTTδTK-RBD on T cell subsets in BALB/c mice was detected by flow cytometry. Results Through homologous recombination, enhanced green fluorescent protein (EGFP) screening marker, and multiple rounds of fluorescent phosphorescence phage screening, a recombinant poxvirus rVTTδTK-RBD, expressing RBD with deletions in the thymidine kinase (TK) gene, was successfully obtained, which was validated by PCR. The in vivo experiments on BALB/c mice showed that rVTTδTK-RBD was highly immunogenic against SARS-CoV-2 and significantly reduced toxicity to the body compared to the parental strain VTT. Conclusion The recombinant poxvirus vaccine rVTTδTK-RBD against SARS-CoV-2 is successfully constructed and obtained, with its safety and immunogenicity confirmed through various experiments.
Animals
;
Mice
;
SARS-CoV-2/genetics*
;
COVID-19
;
Vaccines, Synthetic/genetics*
;
Genes, Reporter
;
Bacteriophages
;
Mice, Inbred BALB C
2.Development and optimization of a cell screening system for farnesoid X receptor agonist.
Zhimin ZHENG ; Xiaoxia HUANG ; Biying PANG ; Nana HUANG ; Bo KONG ; Xin LI ; Wenting XIONG
Chinese Journal of Biotechnology 2023;39(1):359-371
This study aims to develop an improved cell screening system for farnesoid X receptor (FXR) agonists based on a dual luciferase reporter gene system. FXR response element (FXRE) fragments from FXR target genes were cloned and inserted into upstream of firefly luciferase (Luc) gene in the plasmid pGL4-luc2P-Hygro. In combination with the internal reference plasmid containing renilla luciferase, a dual luciferase reporter gene system was developed and used for high throughput screening of FXR agonists. After studying the effects of over-expression of RXR, mouse or human FXR, various FXRE fragments, and different ratio of FXR plasmid amount to reporter gene plasmid, induction efficiency of the screening system was optimized by the known FXR agonist GW4064, and Z factor for the system reached 0.83 under optimized conditions. In summary, an improved cell screening system based on double luciferase reporter gene detection system was developed to facilitate the discovery of FXR agonists, where a new enhanced FXRE element was formed by a superposition of multiple FXRE fragments from FXR target genes, instead of a superposition of traditional IR-1 (inverted repeats-1) fragments.
Humans
;
Mice
;
Animals
;
Transcription Factors/genetics*
;
DNA-Binding Proteins/genetics*
;
Receptors, Cytoplasmic and Nuclear/genetics*
;
Genes, Reporter
;
Luciferases/genetics*
3.Construction and evaluation of a pUC-type prokaryotic promoter reporter system based on lacZ gene.
Lixia FU ; Jingxiao XU ; Xian'gan HAN ; Hui YANG ; Yingtiao LAI ; Zhibin HUANG ; Jiansen GONG
Chinese Journal of Biotechnology 2021;37(1):321-330
To construct a prokaryotic promoter report system with wide applicability, a series of pFGH reporter vectors based on lacZ gene and pUC replicon were constructed from plasmid pFLX107 through the replacement of multiple cloning sites and sequence modifications. The plasmid with the lowest background activity was selected as the final report system with the lacZ gene deletion strain MC4100 as the host bacterium, following by testing with inducible promoter araBAD and the constitutive promoter rpsM. The background activity of pFGH06 was significantly lower than that of other plasmids of the same series, and even lower than that of reference plasmid pRCL at 28 °C (P<0.01). Further evaluation tests show that the plasmid pFGH06 could be used to clone and determine the activity of inducible promoter or constitutive promoter, and the complete recognition of the target promoter could be achieved through blue-white selection in the simulation test of promoter screening. Compared with the reported prokaryotic promoter report systems, pFGH06 has the advantages of smaller size, more multiple clone sites, adjustable background activity, high efficiency of promoter screening and recognition, thus with a wide application prospect.
Cloning, Molecular
;
Escherichia coli/genetics*
;
Genes, Reporter/genetics*
;
Genetic Vectors/genetics*
;
Lac Operon/genetics*
;
Plasmids/genetics*
;
beta-Galactosidase/genetics*
4.Preparation of transgenic Musca domestica by microinjection method.
Lanchen WANG ; Yang YANG ; Xiaoli SHANG ; Bing WANG ; Lin YUAN ; Guiming ZHU
Chinese Journal of Biotechnology 2021;37(2):655-662
The transposon vector containing enhanced green fluorescent protein (EGFP) was injected into early housefly (Musca domestica L.) eggs by microinjection method to realize stable gene expression in vivo for verification, and to study housefly gene function. A borosilicate glass micro injection needle suitable for microinjection of housefly eggs was made, the softening treatment conditions of housefly egg shells were explored, and a microinjection technology platform suitable for housefly was constructed with a high-precision microsyringe Nanoject Ⅲ as the main body. The recombinant plasmid PiggyBac-[3×P3]-EGFP containing the eye-specific 3×P3 promoter and EGFP and the stable genetic expression helper plasmid pHA3pig helper were microinjected into the treated housefly eggs. After emergence, the eye luminescence was observed, and the expression and transcription level of EGFP were detected. The results showed that the normal hatching rate of housefly eggs was 55% when rinsed in bleaching water for 35 s. The hardness of the egg shell treated for 35 s was suitable for injection and the injection needle was not easy to break. About 3% of the emerged housefly eyes had green fluorescence. Through further molecular detection, EGFP specific fragments with a size of 750 bp were amplified from DNA and RNA of housefly. Through the technical platform, the stable expression of reporter genes in housefly can be conveniently and effectively realized, and a bioreactor with housefly as the main body can be established, which provides certain reference value for subsequent research on housefly gene function.
Animals
;
Animals, Genetically Modified
;
Gene Expression
;
Genes, Reporter
;
Green Fluorescent Proteins/genetics*
;
Houseflies/genetics*
;
Microinjections
5.Bi-FoRe: an efficient bidirectional knockin strategy to generate pairwise conditional alleles with fluorescent indicators.
Bingzhou HAN ; Yage ZHANG ; Xuetong BI ; Yang ZHOU ; Christopher J KRUEGER ; Xinli HU ; Zuoyan ZHU ; Xiangjun TONG ; Bo ZHANG
Protein & Cell 2021;12(1):39-56
Gene expression labeling and conditional manipulation of gene function are important for elaborate dissection of gene function. However, contemporary generation of pairwise dual-function knockin alleles to achieve both conditional and geno-tagging effects with a single donor has not been reported. Here we first developed a strategy based on a flipping donor named FoRe to generate conditional knockout alleles coupled with fluorescent allele-labeling through NHEJ-mediated unidirectional targeted insertion in zebrafish facilitated by the CRISPR/Cas system. We demonstrated the feasibility of this strategy at sox10 and isl1 loci, and successfully achieved Cre-induced conditional knockout of target gene function and simultaneous switch of the fluorescent reporter, allowing generation of genetic mosaics for lineage tracing. We then improved the donor design enabling efficient one-step bidirectional knockin to generate paired positive and negative conditional alleles, both tagged with two different fluorescent reporters. By introducing Cre recombinase, these alleles could be used to achieve both conditional knockout and conditional gene restoration in parallel; furthermore, differential fluorescent labeling of the positive and negative alleles enables simple, early and efficient real-time discrimination of individual live embryos bearing different genotypes prior to the emergence of morphologically visible phenotypes. We named our improved donor as Bi-FoRe and demonstrated its feasibility at the sox10 locus. Furthermore, we eliminated the undesirable bacterial backbone in the donor using minicircle DNA technology. Our system could easily be expanded for other applications or to other organisms, and coupling fluorescent labeling of gene expression and conditional manipulation of gene function will provide unique opportunities to fully reveal the power of emerging single-cell sequencing technologies.
Alleles
;
Animals
;
CRISPR-Cas Systems
;
DNA End-Joining Repair
;
DNA, Circular/metabolism*
;
Embryo, Nonmammalian
;
Gene Editing/methods*
;
Gene Knock-In Techniques
;
Gene Knockout Techniques
;
Genes, Reporter
;
Genetic Loci
;
Genotyping Techniques
;
Green Fluorescent Proteins/metabolism*
;
Integrases/metabolism*
;
Luminescent Proteins/metabolism*
;
Mutagenesis, Insertional
;
Single-Cell Analysis
;
Zebrafish/metabolism*
6.Cooperation-based sperm clusters mediate sperm oviduct entry and fertilization.
Yongcun QU ; Qi CHEN ; Shanshan GUO ; Chiyuan MA ; Yonggang LU ; Junchao SHI ; Shichao LIU ; Tong ZHOU ; Taichi NODA ; Jingjing QIAN ; Liwen ZHANG ; Xili ZHU ; Xiaohua LEI ; Yujing CAO ; Wei LI ; Wei LI ; Nicolas PLACHTA ; Martin M MATZUK ; Masahito IKAWA ; Enkui DUAN ; Ying ZHANG ; Hongmei WANG
Protein & Cell 2021;12(10):810-817
Animals
;
Antigens, Surface/genetics*
;
Cell Communication/genetics*
;
Copulation/physiology*
;
Fallopian Tubes/metabolism*
;
Female
;
Fertilization/genetics*
;
GPI-Linked Proteins/genetics*
;
Gene Expression Regulation
;
Genes, Reporter
;
Green Fluorescent Proteins/metabolism*
;
Litter Size
;
Luminescent Proteins/metabolism*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Mitochondria/metabolism*
;
Reproduction/genetics*
;
Signal Transduction
;
Sperm Count
;
Sperm Motility/genetics*
;
Spermatozoa/metabolism*
;
Uterus/metabolism*
7.Effects of Transcription Factor MZF-1 on Transcriptive Regulation of Acute Monocytic Leukemia-related Gene MLAA-34.
Bo LEI ; Wang-Gang ZHANG ; Ai-Li HE ; Yin-Xia CHEN ; Xing-Meim CAO ; Peng-Yu ZHANG ; Wan-Hong ZHAO ; Jian-Li WANG ; Jie LIU ; Xiao-Rong MA ; Yan-Ping ZHANG ; Hui ZHANG
Journal of Experimental Hematology 2019;27(5):1463-1468
OBJECTIVE:
To investigate the transcriptional regulation of transcription factor MZF-1 on acute monocytic leukemia-related gene MLAA-34.
METHODS:
The effect of MZF-1 on the transcriptional activity of MLAA-34 gene promoter was analyzed by luciferase reporter gene detection system and site-directed mutation technique. The EMSA and ChIP assay were used to verify whether MZF-1 directly and specifically binds to the core region of MLAA-34 promoter. The over-expression vector and interference vector of MZF-1 were constructed to transfect U937 cells, and RT-PCR and Western blot were used to detect the transcription and expression changes of MLAA-34 gene.
RESULTS:
The transcription factor MZF-1 had a regulatory effect on MLAA-34 gene expression, and the relative luciferase activity was decreased after MZF-1 binding point mutation (P<0.01). EMSA and ChIP experiments demonstrated that MZF-1 could directly bind to MLAA-34 promoter and play a regulatory role. In the over-expression test, the increase of MZF-1 could up-regulate the expression of MLAA-34 (P<0.05). In the interference test, the decrease of MZF-1 could down-regulate the expression of MLAA-34 (P<0.05).
CONCLUSION
Transcription factor MZF-1 can bind to the transcriptional regulatory region on the promoter of MLAA-34 gene and promote the transcription of MLAA-34 gene in acute monocytic leukemia.
Antigens, Neoplasm
;
genetics
;
Apoptosis Regulatory Proteins
;
genetics
;
Gene Expression Regulation, Neoplastic
;
Genes, Reporter
;
Hepatocyte Nuclear Factor 1-alpha
;
Humans
;
Kruppel-Like Transcription Factors
;
metabolism
;
Leukemia, Monocytic, Acute
;
Promoter Regions, Genetic
;
Transcription, Genetic
8.Construction and identification of an apoptosis detection system based on firefly luciferase reporter gene.
Luping CHE ; Yonghua LI ; Bin YANG ; Zhikai XU ; Ying LIAO ; Xusheng QIU ; Lei TAN ; Yingjie SUN ; Cuiping SONG ; Chan DING ; Gang YAO ; Jinquan WANG ; Chunchun MENG
Chinese Journal of Biotechnology 2019;35(8):1557-1565
To construct a eukaryotic expression plasmid containing the luciferase reporter gene (Fluc) to quickly detect apoptosis. Four amino acids, Asp-Glu-Val-Asp (DEVD), the recognize motif of Caspase-3, were introduced into the middle of the Fluc-C and N fragment. Meanwhile, four amino acids, Asp-Glu-Val-Gly (DEVG), were selected as a negative control. Subsequently, the recombinant gene was cloned into the N and C terminal end of the split intein, and named as pFluc-DEVD and pFluc-DEVG. Then the plasmids were transfected into cells and renilla luciferase was co-transfected in each sample as an internal control for transfection efficiency. Then the apoptosis level was detected by the double luciferase reporter gene and the Western blotting analysis. The results showed that when apoptosis occurred, the content of firefly luciferase expressed in the pFluc-DEVD plasmid transfected group was about 3 times higher than pFluc-DEVG plasmid transfected group. Furthermore, Western blotting detection indicated that the Fluc level was significantly increased in pFluc-DEVD transfected group when pre-treated by apoptosis stimulants. The activation degree of Caspase-3 was closely related to the expression of Fluc, and had a significant statistical difference. These results confirmed that firefly luciferase protein expressed by pFluc-DEVD plasmid can be cleaved by the intracellular Caspase-3 enzyme, and this plasmid can accurately reflect the cell apoptosis level, which provides a useful method for quantitative detection of apoptosis.
Apoptosis
;
Genes, Reporter
;
Luciferases, Firefly
;
Transfection
9.Cloning of New Antigen Gene MLAA-34 Promoter and Identification of Core Region in Acute Monocytic Leukemia.
Bo LEI ; Wang-Gang ZHANG ; Ai-Li HE ; Yin-Xia CHEN ; Xing-Mei CAO ; Wan-Hong ZHAO ; Jian-Li WANG ; Jie LIU ; Xiao-Rong MA ; Peng-Yu ZHANG ; Ju BAI
Journal of Experimental Hematology 2019;27(3):641-645
OBJECTIVE:
To clone the promoter sequence of acute monocytic leukemia new antigen gene.MLAA-34 and identify its promoter core region.
METHODS:
The full-length fragment of MLAA-34 gene promoter region was amplified by PCR, then was ligated into pGL3-Basic vector, and the recombinant plasmid was cloned. Constructed a series of MLAA-34 gene promoter 5' flanking region truncated plasmid. These recombinant plasmids were transfected into U937 and HEK293 cells, and the dual luciferase reporter gene was used to detect the promoter activity of each fragment to determine the minimum active region. Transcription factor binding sites were analyzed by bioinformatics methods.
RESULTS:
The recombinant plasmid containing MLAA-34 promoter sequence and its truncated plasmid were successfully constructed, and the promoter activity was significantly increased as compared with the empty vector (P<0.001). The minimal active region of MLAA-34 located between 402 bp and 200 bp. It contained multiple transcription factor binding sites such as E2F1, MZF-1, SP1, USF2 and STAT3.
CONCLUSION
The promoter of luciferase reporter gene has been successfully constructed with different deletion fragments of MLAA-34, and its core promoter region may contain multiple transcription factor sequence.
Adult
;
Antigens, Neoplasm
;
genetics
;
Apoptosis Regulatory Proteins
;
genetics
;
Cloning, Molecular
;
Genes, Reporter
;
HEK293 Cells
;
Humans
;
Leukemia, Monocytic, Acute
;
genetics
;
Luciferases
;
Promoter Regions, Genetic
10.MicroRNA-186 targets SKP2 to induce p27(Kip1)-mediated pituitary tumor cell cycle deregulation and modulate cell proliferation
Zongze HE ; Longyi CHEN ; Qi WANG ; Cheng YIN ; Junting HU ; Xiao HU ; Fan FEI ; Jian TANG
The Korean Journal of Physiology and Pharmacology 2019;23(3):171-179
Pituitary tumors are usually benign but can occasionally exhibit hormonal and proliferative behaviors. Dysregulation of the G1/S restriction point largely contributes to the over-proliferation of pituitary tumor cells. F-box protein S-phase kinase-interacting protein-2 (SKP2) reportedly targets and inhibits the expression of p27(Kip1), a well-known negative regulator of G1 cell cycle progression. In this study, SKP2 expression was found to be upregulated while p27(Kip1) expression was determined to be downregulated in rat and human pituitary tumor cells. Furthermore, SKP2 knockdown induced upregulation of p27(Kip1) and cell growth inhibition in rat and human pituitary tumor cells, while SKP2overexpression elicited opposite effects on p27(Kip1) expression and cell growth. The expression of microRNA-186 (miR-186) was reported to be reduced in pituitary tumors. Online tools predicted SKP2 to be a direct downstream target of miR-186, which was further confirmed by luciferase reporter gene assays. Moreover, miR-186 could modulate the cell proliferation and p27(Kip1)-mediated cell cycle alternation of rat and human pituitary tumor cells through SKP2. As further confirmation of these findings, miR-186 and p27(Kip1) expression were downregulated, while SKP2 expression was upregulated in human pituitary tumor tissue samples; thus, SKP2 expression negatively correlated with miR-186 and p27(Kip1) expression. In contrast, miR-186 expression positively associated with p27(Kip1) expression. Taken together, we discovered a novel mechanism by which miR-186/SKP2 axis modulates pituitary tumor cell proliferation through p27(Kip1)-mediated cell cycle alternation.
Animals
;
Cell Cycle
;
Cell Proliferation
;
Cyclin-Dependent Kinase Inhibitor p27
;
Genes, Reporter
;
Humans
;
Luciferases
;
Pituitary Neoplasms
;
Rats
;
Up-Regulation

Result Analysis
Print
Save
E-mail