1.Screening of housekeeping genes in Gelsemium elegans and expression patterns of genes involved in its alkaloid biosynthesis.
Yao ZHANG ; Detian MU ; Yu ZHOU ; Ying LU ; Yisong LIU ; Mengting ZUO ; Zhuang DONG ; Zhaoying LIU ; Qi TANG
Chinese Journal of Biotechnology 2023;39(1):286-303
Gelsemium elegans is a traditional Chinese herb of medicinal importance, with indole terpene alkaloids as its main active components. To study the expression of the most suitable housekeeping reference genes in G. elegans, the root bark, stem segments, leaves and inflorescences of four different parts of G. elegans were used as materials in this study. The expression stability of 10 candidate housekeeping reference genes (18S, GAPDH, Actin, TUA, TUB, SAND, EF-1α, UBC, UBQ, and cdc25) was assessed through real-time fluorescence quantitative PCR, GeNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that EF-1α was stably expressed in all four parts of G. elegans and was the most suitable housekeeping gene. Based on the coexpression pattern of genome, full-length transcriptome and metabolome, the key candidate targets of 18 related genes (AS, AnPRT, PRAI, IGPS, TSA, TSB, TDC, GES, G8H, 8-HGO, IS, 7-DLS, 7-DLGT, 7-DLH, LAMT, SLS, STR, and SGD) involved in the Gelsemium alkaloid biosynthesis were obtained. The expression of 18 related enzyme genes were analyzed by qRT-PCR using the housekeeping gene EF-1α as a reference. The results showed that these genes' expression and gelsenicine content trends were correlated and were likely to be involved in the biosynthesis of the Gelsemium alkaloid, gelsenicine.
Genes, Essential
;
Gelsemium/genetics*
;
Peptide Elongation Factor 1/genetics*
;
Transcriptome
;
Gene Expression Profiling/methods*
;
Alkaloids
;
Real-Time Polymerase Chain Reaction/methods*
;
Reference Standards
2.Gastric Mucosal Atrophy Impedes Housekeeping Gene Methylation in Gastric Cancer Patients.
Jung Hwan OH ; Mun Gan RHYU ; Suk Il KIM ; Mi Ri YUN ; Jung Ha SHIN ; Seung Jin HONG
Cancer Research and Treatment 2019;51(1):267-279
PURPOSE: Helicobacter pylori infection induces phenotype-stabilizing methylation and promotes gastric mucosal atrophy that can inhibit CpG-island methylation. Relationship between the progression of gastric mucosal atrophy and the initiation of CpG-island methylation was analyzed to delineate epigenetic period for neoplastic transformation. MATERIALS AND METHODS: Normal-appearing gastric mucosa was biopsied from 110 H. pylori–positive controls, 95 H. pylori–negative controls, 99 gastric cancer patients, and 118 gastric dysplasia patients. Gastric atrophy was assessed using endoscopic-atrophic-border score. Methylation-variable sites of eight CpG-island genes adjacent to Alu (CDH1, ARRDC4, PPARG, and TRAPPC2L) or LTR (MMP2, CDKN2A, RUNX2, and RUNX3) retroelements and stomach-specific TFF3 gene were analyzed using radioisotope-labeled methylation-specific polymerase chain reaction. RESULTS: Mean ages of H. pylori–positive controls with mild, moderate, and severe atrophy were 51, 54, and 65 years and those of H. pylori–associated TFF3 overmethylation at the three atrophic levels (51, 58, and 63 years) tended to be periodic. Alu-adjacent overmethylation (50 years) was earlier than TFF3 overmethylation (58 years) in H. pylori–positive controls with moderate atrophy. Cancer patients with moderate atrophy showed late Alu-adjacent (58 years) overmethylation and frequent LTR-adjacent overmethylation. LTR-adjacent overmethylation was frequent in cancer (66 years) and dysplasia (68 years) patients with severe atrophy. CONCLUSION: Atrophic progression is associated with gastric cancer at moderate level by impeding the initiation of Alu-adjacent methylation. LTR-adjacent methylation is increased in cancer patients and subsequently in dysplasia patients.
Atrophy*
;
DNA Methylation
;
Epigenomics
;
Gastric Mucosa
;
Gastritis, Atrophic
;
Genes, Essential*
;
Helicobacter pylori
;
Housekeeping*
;
Humans
;
Methylation*
;
Polymerase Chain Reaction
;
Retroelements
;
Stomach Neoplasms*
3.Blood transcriptome resources of chinstrap (Pygoscelis antarcticus) and gentoo (Pygoscelis papua) penguins from the South Shetland Islands, Antarctica
Bo Mi KIM ; Jihye JEONG ; Euna JO ; Do Hwan AHN ; Jeong Hoon KIM ; Jae Sung RHEE ; Hyun PARK
Genomics & Informatics 2019;17(1):e5-
The chinstrap (Pygoscelis antarcticus) and gentoo (P. papua) penguins are distributed throughout Antarctica and the sub-Antarctic islands. In this study, high-quality de novo assemblies of blood transcriptomes from these penguins were generated using the Illumina MiSeq platform. A total of 22.2 and 21.8 raw reads were obtained from chinstrap and gentoo penguins, respectively. These reads were assembled using the Oases assembly platform and resulted in 26,036 and 21,854 contigs with N50 values of 929 and 933 base pairs, respectively. Functional gene annotations through pathway analyses of the Gene Ontology, EuKaryotic Orthologous Groups, and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were performed for each blood transcriptome, resulting in a similar compositional order between the two transcriptomes. Ortholog comparisons with previously published transcriptomes from the Adélie (P. adeliae) and emperor (Aptenodytes forsteri) penguins revealed that a high proportion of the four penguins’ transcriptomes had significant sequence homology. Because blood and tissues of penguins have been used to monitor pollution in Antarctica, immune parameters in blood could be important indicators for understanding the health status of penguins and other Antarctic animals. In the blood transcriptomes, KEGG analyses detected many essential genes involved in the major innate immunity pathways, which are key metabolic pathways for maintaining homeostasis against exogenous infections or toxins. Blood transcriptome studies such as this may be useful for checking the immune and health status of penguins without sacrifice.
Animals
;
Base Pairing
;
Gene Ontology
;
Genes, Essential
;
Genome
;
Homeostasis
;
Immunity, Innate
;
Islands
;
Metabolic Networks and Pathways
;
Molecular Sequence Annotation
;
Sequence Homology
;
Spheniscidae
;
Transcriptome
4.Periodic Methylation Patterns in the Background Mucosa of Gastric Cancer
Sang Woong KIM ; Jung Hwan OH ; Tae Ho KIM ; Joon Sung KIM ; Seung Jin HONG
The Korean Journal of Helicobacter and Upper Gastrointestinal Research 2019;19(1):48-55
BACKGROUND/AIMS: Gastrointestinal glandular stem cells renew every 8 years. New stem cells with impeded housekeeping gene methylation have unstable phenotypes and are prone to transform into malignant cells. Age-related changes in methylation in the gastric mucosa were evaluated to define the period of cancer-prone stem cell replacement. MATERIALS AND METHODS: Endoscopic biopsy specimens of normal-appearing gastric mucosa were obtained from 148 Helicobacter pylori-negative controls, 124 H. pylori-positive controls, and 69 gastric cancer patients with closed-type mucosal atrophy. Methylation-variable sites of two stomach-specific genes (TFF2 and TFF3) and four housekeeping genes (CDH1, ARRDC4, MMP2, and CDKN2A) were analyzed using radioisotope-labeled methylation-specific polymerase chain reaction. Age-related methylation was evaluated depending on the gastric mucosal atrophy at 2-year intervals. RESULTS: TFF2 methylation peaked periodically at 40 to 41, 48 to 49, 56 to 57, and 64 to 65 years of age in H. pylori-negative controls. Periodic peaks of TFF2 methylation were also found in H. pylori-positive controls. Housekeeping-gene methylation troughed at 48 to 49, 56 to 57, and 68 to 69 years of age in cancer patients. Trough methylation of CDH1 and ARRDC4 was lower in cancer patients than in H. pylori-positive controls. CONCLUSIONS: Methylation peaks of stomach-specific TFF2 in controls and methylation troughs of housekeeping genes in cancer patients were found every 8 years. Periodic methylation patterns may be used to identify individuals at high risk for gastric cancer.
Adult Stem Cells
;
Atrophy
;
Biopsy
;
DNA Methylation
;
Gastric Mucosa
;
Genes, Essential
;
Helicobacter
;
Humans
;
Methylation
;
Mucous Membrane
;
Phenotype
;
Polymerase Chain Reaction
;
Stem Cells
;
Stomach Neoplasms
5.Comparison of the Effectiveness in the Application of Competitive and Noncompetitive Internal Control for the Laboratory Developed Polymerase Chain Reaction
Sunmi SHIN ; Jung Won KANG ; Jae won KANG ; Young Ik SEO ; Hyukki MIN
Korean Journal of Blood Transfusion 2019;30(1):57-64
BACKGROUND: A nucleic acid amplification test was adopted to detect transfusion-transmitted infectious agents. In the case of HTLV, however, there was no internal control (IC) because the laboratory developed polymerase chain reaction (laboratory-developed PCR) was used. In this study, noncompetitive IC was constructed for the laboratory-developed PCR of HTLV and the effectiveness was compared with the competitive test that was constructed in a previous study. METHODS: As a competitive IC, plasmid DNA, including the primer recognition sequence for the amplification of the HTLV pX region, was constructed. As a noncompetitive IC, an additional primer was constructed for the amplification of the housekeeping gene, the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene. The performance of the competitive and noncompetitive IC was verified and compared using 10 HTLV positive samples and 10 negative samples. In addition, the detection limits in the assay adopting competitive IC and noncompetitive IC were compared. RESULTS: In the case of competitive IC applications, all 10 positive samples were positive and all 10 negative samples were negative. In the case of noncompetitive IC applications, however, one positive sample was not detected. The detection limit of the assay using competitive IC was 100 pg and that of the assay using noncompetitive IC was 1 ng. CONCLUSION: Although the manufacturing processes is not required using noncompetitive IC, the adoption of competitive IC is more effective to ensure the assay results because the ability of detection of the assay adopting competitive IC was better than that using noncompetitive IC.
DNA
;
Genes, Essential
;
Glyceraldehyde 3-Phosphate
;
Limit of Detection
;
Nucleic Acid Amplification Techniques
;
Oxidoreductases
;
Plasmids
;
Polymerase Chain Reaction
6.In silico analysis of putative drug and vaccine targets of the metabolic pathways of Actinobacillus pleuropneumoniae using a subtractive/comparative genomics approach
Biruk T BIRHANU ; Seung Jin LEE ; Na Hye PARK ; Ju Beom SONG ; Seung Chun PARK
Journal of Veterinary Science 2018;19(2):188-199
Actinobacillus pleuropneumoniae is a Gram-negative bacterium that resides in the respiratory tract of pigs and causes porcine respiratory disease complex, which leads to significant losses in the pig industry worldwide. The incidence of drug resistance in this bacterium is increasing; thus, identifying new protein/gene targets for drug and vaccine development is critical. In this study, we used an in silico approach, utilizing several databases including the Kyoto Encyclopedia of Genes and Genomes (KEGG), the Database of Essential Genes (DEG), DrugBank, and Swiss-Prot to identify non-homologous essential genes and prioritize these proteins for their druggability. The results showed 20 metabolic pathways that were unique and contained 273 non-homologous proteins, of which 122 were essential. Of the 122 essential proteins, there were 95 cytoplasmic proteins and 11 transmembrane proteins, which are potentially suitable for drug and vaccine targets, respectively. Among these, 25 had at least one hit in DrugBank, and three had similarity to metabolic proteins from Mycoplasma hyopneumoniae, another pathogen causing porcine respiratory disease complex; thus, they could serve as common therapeutic targets. In conclusion, we identified glyoxylate and dicarboxylate pathways as potential targets for antimicrobial therapy and tetra-acyldisaccharide 4′-kinase and 3-deoxy-D-manno-octulosonic-acid transferase as vaccine candidates against A. pleuropneumoniae.
Actinobacillus pleuropneumoniae
;
Actinobacillus
;
Computer Simulation
;
Cytoplasm
;
Databases, Protein
;
Drug Resistance
;
Genes, Essential
;
Genome
;
Genomics
;
Incidence
;
Metabolic Networks and Pathways
;
Mycoplasma hyopneumoniae
;
Pleuropneumonia
;
Respiratory System
;
Swine
;
Transferases
7.Uropathogenic Escherichia coli ST131 in urinary tract infections in children.
Ki Wook YUN ; Mi Kyung LEE ; Wonyong KIM ; In Seok LIM
Korean Journal of Pediatrics 2017;60(7):221-226
PURPOSE: Escherichia coli sequence type (ST) 131, a multidrug-resistant clone causing extraintestinal infections, has rapidly become prevalent worldwide. However, the epidemiological and clinical features of pediatric infections are poorly understood. We aimed to explore the characteristics of ST131 Escherichia coli isolated from Korean children with urinary tract infections. METHODS: We examined 114 uropathogenic E. coli (UPEC) isolates from children hospitalized at Chung-Ang University Hospital between 2011 and 2014. Bacterial strains were classified into STs by partial sequencing of seven housekeeping genes (adk, fumC, gyrB, icd, mdh, purA, and recA). Clinical characteristics and antimicrobial susceptibility were compared between ST131 and non-ST131 UPEC isolates. RESULTS: Sixteen UPEC isolates (14.0%) were extended-spectrum β-lactamase (ESBL)-producers; 50.0% of ESBL-producers were ST131 isolates. Of all the isolates tested, 13.2% (15 of 114) were classified as ST131. There were no statistically significant associations between ST131 and age, sex, or clinical characteristics, including fever, white blood cell counts in urine and serum, C-reactive protein, radiologic abnormalities, and clinical outcome. However, ST131 isolates showed significantly lower rates of susceptibility to cefazolin (26.7%), cefotaxime (40.0%), cefepime (40.0%), and ciprofloxacin (53.3%) than non-ST131 isolates (65.7%, 91.9%, 92.9%, and 87.9%, respectively; P<0.001 for all). ESBL was more frequently produced in ST131 (53.3%) than in non-ST131 (8.1%) isolates (P<0.01). CONCLUSION: ST131 E. coli isolates were prevalent uropathogens in children at a single medical center in Korea between 2011 and 2014. Although ST131 isolates showed higher rates of antimicrobial resistance, clinical presentation and outcomes of patients were similar to those of patients infected with non-ST131 isolates.
C-Reactive Protein
;
Cefazolin
;
Cefotaxime
;
Child*
;
Ciprofloxacin
;
Clone Cells
;
Escherichia coli
;
Fever
;
Genes, Essential
;
Humans
;
Korea
;
Leukocyte Count
;
Multilocus Sequence Typing
;
Urinary Tract Infections*
;
Urinary Tract*
;
Uropathogenic Escherichia coli*
8.Mining the Proteome of Fusobacterium nucleatum subsp. nucleatum ATCC 25586 for Potential Therapeutics Discovery: An In Silico Approach.
Abdul Musaweer HABIB ; Md Saiful ISLAM ; Md SOHEL ; Md Habibul Hasan MAZUMDER ; Mohd Omar Faruk SIKDER ; Shah Md SHAHIK
Genomics & Informatics 2016;14(4):255-264
The plethora of genome sequence information of bacteria in recent times has ushered in many novel strategies for antibacterial drug discovery and facilitated medical science to take up the challenge of the increasing resistance of pathogenic bacteria to current antibiotics. In this study, we adopted subtractive genomics approach to analyze the whole genome sequence of the Fusobacterium nucleatum, a human oral pathogen having association with colorectal cancer. Our study divulged 1,499 proteins of F. nucleatum, which have no homolog's in human genome. These proteins were subjected to screening further by using the Database of Essential Genes (DEG) that resulted in the identification of 32 vitally important proteins for the bacterium. Subsequent analysis of the identified pivotal proteins, using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Automated Annotation Server (KAAS) resulted in sorting 3 key enzymes of F. nucleatum that may be good candidates as potential drug targets, since they are unique for the bacterium and absent in humans. In addition, we have demonstrated the three dimensional structure of these three proteins. Finally, determination of ligand binding sites of the 2 key proteins as well as screening for functional inhibitors that best fitted with the ligands sites were conducted to discover effective novel therapeutic compounds against F. nucleatum.
Anti-Bacterial Agents
;
Bacteria
;
Binding Sites
;
Colonic Neoplasms
;
Colorectal Neoplasms
;
Computer Simulation*
;
Drug Delivery Systems
;
Drug Discovery
;
Fusobacterium nucleatum*
;
Fusobacterium*
;
Genes, Essential
;
Genome
;
Genome, Human
;
Genomics
;
Humans
;
Ligands
;
Mass Screening
;
Mining*
;
Proteome*
9.A nonsense PAX6 mutation in a family with congenital aniridia.
Kyoung Hee HAN ; Hye Jin LEE ; Il Soo HA ; Hee Gyung KANG ; Hae Il CHEONG
Korean Journal of Pediatrics 2016;59(Suppl 1):S1-S4
Congenital aniridia is a rare ocular malformation that presents with severe hypoplasia of the iris and various ocular manifestations. Most cases of congenital aniridia are known to be related to mutations in the paired box gene-6 (PAX6), which is an essential gene in eye development. Herein, we report a familial case of autosomal dominant congenital aniridia with four affected members in 3 consecutive generations and describe the detailed ophthalmologic findings for one of these members. As expected, mutational analysis revealed a nonsense mutation (p.Ser122*) in the PAX6 gene. Thus, our findings reiterate the importance of PAX6 mutations in congenital aniridia.
Aniridia*
;
Codon, Nonsense
;
Family Characteristics
;
Genes, Essential
;
Humans
;
Iris
;
WAGR Syndrome
;
Wilms Tumor
10.Multilocus sequence typing analysis of Pseudomonas aeruginosa isolated from pet Chinese stripe-necked turtles (Ocadia sinensis).
Mitchell WENDT ; Gang Joon HEO
Laboratory Animal Research 2016;32(4):208-216
Our research sought to characterize the phylogeny of Pseudomonas aeruginosa isolated from pet Chinese stripe-necked turtles (Ocadia sinensis) to better understand its evolutionary relation to other isolates and increase understanding of a potential zoonotic pathogen transmitted through direct contact with pet turtles. Thirty-one Pseudomonas aeruginosa isolates were obtained from both immature and adult turtles sold in pet shops in Korea. To characterize the phylogenic position of Chinese stripe-necked turtle-borne P. aeruginosa relative to other strains, multilocus sequence typing (MLST) analysis was performed due to the accessibility and breadth of MLST databases. Seven housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA, and trpE) were sequenced and the results were compared with data from the MLST database. The genes were further used for phylogenetic analysis of P. aeruginosa using concatenated gene fragments. Both rooted and unrooted phylogenetic trees were generated. Eleven distinct sequence types were present within the isolates among which seven were new. Expanding an unrooted phylogenetic tree to include P. aeruginosa MLST sequences isolated from various other geographic locations and sources revealed a divergent cluster containing the majority of isolates obtained from turtles. This suggests that P. aeruginosa strains particularly well-adapted for inhabiting turtles occupy a distinct phylogenetic position.
Adult
;
Asian Continental Ancestry Group*
;
Genes, Essential
;
Geographic Locations
;
Humans
;
Korea
;
Multilocus Sequence Typing*
;
Phylogeny
;
Pseudomonas aeruginosa*
;
Pseudomonas*
;
Trees
;
Turtles*

Result Analysis
Print
Save
E-mail