1.Enhancement of Virus Replication in An Influenza A Virus NS1-Expresssing 293 Cell Line.
Wu Yang ZHU ; Xiao Yan TAO ; Xin Jun LYU ; Peng Cheng YU ; Zhuo Zhuang LU ;
Biomedical and Environmental Sciences 2016;29(3):224-228
		                        		
		                        			
		                        			The nonstructural protein 1 (NS1) of influenza A virus, which is absent from the viral particle, but highly expressed in infected cells, strongly antagonizes the interferon (IFN)-mediated antiviral response. We engineered an NS1-expressing 293 (293-NS1) cell line with no response to IFN stimulation. Compared with the parental 293 cells, the IFN-nonresponsive 293-NS1 cells improved the growth capacity of various viruses, but the introduction of NS1 barely enhanced the propagation of Tahyna virus, a negative-strand RNA virus. In particular, fastidious enteric adenovirus that replicates poorly in 293 cells may grow more efficiently in 293-NS1 cells; thus, IFN-nonresponsive 293-NS1 cells might be of great value in diagnostic laboratories for the cultivation and isolation of human enteric adenoviruses.
		                        		
		                        		
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Gene Expression Regulation
		                        			;
		                        		
		                        			HEK293 Cells
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			Influenza A virus
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Viral Nonstructural Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Virus Cultivation
		                        			;
		                        		
		                        			methods
		                        			;
		                        		
		                        			Virus Replication
		                        			;
		                        		
		                        			physiology
		                        			
		                        		
		                        	
2.Genomic assays for Epstein-Barr virus-positive gastric adenocarcinoma.
Experimental & Molecular Medicine 2015;47(1):e134-
		                        		
		                        			
		                        			A small set of gastric adenocarcinomas (9%) harbor Epstein-Barr virus (EBV) DNA within malignant cells, and the virus is not an innocent bystander but rather is intimately linked to pathogenesis and tumor maintenance. Evidence comes from unique genomic features of host DNA, mRNA, microRNA and CpG methylation profiles as revealed by recent comprehensive genomic analysis by The Cancer Genome Atlas Network. Their data show that gastric cancer is not one disease but rather comprises four major classes: EBV-positive, microsatellite instability (MSI), genomically stable and chromosome instability. The EBV-positive class has even more marked CpG methylation than does the MSI class, and viral cancers have a unique pattern of methylation linked to the downregulation of CDKN2A (p16) but not MLH1. EBV-positive cancers often have mutated PIK3CA and ARID1A and an amplified 9p24.1 locus linked to overexpression of JAK2, CD274 (PD-L1) and PDCD1LG2 (PD-L2). Multiple noncoding viral RNAs are highly expressed. Patients who fail standard therapy may qualify for enrollment in clinical trials targeting cancer-related human gene pathways or promoting destruction of infected cells through lytic induction of EBV genes. Genomic tests such as the GastroGenus Gastric Cancer Classifier are available to identify actionable variants in formalin-fixed cancer tissue of affected patients.
		                        		
		                        		
		                        		
		                        			Adenocarcinoma/*diagnosis/*etiology/therapy
		                        			;
		                        		
		                        			DNA Methylation
		                        			;
		                        		
		                        			Epstein-Barr Virus Infections/*complications
		                        			;
		                        		
		                        			Gene Expression Profiling
		                        			;
		                        		
		                        			Gene Expression Regulation, Neoplastic
		                        			;
		                        		
		                        			Gene Expression Regulation, Viral
		                        			;
		                        		
		                        			*Genomics/methods
		                        			;
		                        		
		                        			Herpesvirus 4, Human/*physiology
		                        			;
		                        		
		                        			Host-Pathogen Interactions/genetics
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			MicroRNAs/genetics
		                        			;
		                        		
		                        			Mutation
		                        			;
		                        		
		                        			RNA, Messenger/genetics
		                        			;
		                        		
		                        			Signal Transduction
		                        			;
		                        		
		                        			Stomach Neoplasms/*diagnosis/*etiology/therapy
		                        			;
		                        		
		                        			Virus Integration
		                        			
		                        		
		                        	
3.New Strategy for anti-HBV therapy: blocking P-8 interaction.
Chinese Journal of Virology 2014;30(6):713-720
		                        		
		                        			
		                        			Clinically being applied treatment against chronic hepatitis has three limitations: low response rates, severe adverse effects and a high rate of drug resistance. Hence, novel targets for antiviral therapy need to be developed so as to provide an armory of different strategies. During the replication of hepatitis B virus, the interaction of viral polymerase (P protein, also called P) and epsilonRNA is indispensable for the initiation of reverse transcription via protein priming and the pregenome RNA (pgRNA) packaging. Three strategies are currently developed for blocking P-epsilon interaction: heat shock protein inhibitors, epsilonaptamers and chemical compounds for blocking formation of P-epsilon complex. Previously, our group has for the first time worldwide in vitro screened several aptamers, which are able to interfere with the P-epsilon interaction. A strong inhibition against HBV was observed in vitro and in vivo experiments, respectively. In conclusion, the so far developed chemicals suppressing the P-epsilon interaction may bypass or overcome the viral resistance problems during clinic treatment and represent a highly attractive option for therapeutic intervention.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Gene Expression Regulation, Viral
		                        			;
		                        		
		                        			Gene Products, pol
		                        			;
		                        		
		                        			antagonists & inhibitors
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Hepatitis B
		                        			;
		                        		
		                        			therapy
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Hepatitis B virus
		                        			;
		                        		
		                        			enzymology
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Humans
		                        			;
		                        		
		                        			RNA, Viral
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Virus Replication
		                        			
		                        		
		                        	
4.Effects of HIV-1 tat on secretion of TNF-α and IL-1β by U87 cells in AIDS patients with or without AIDS dementia complex.
Li ZHAO ; Shuang Shuang PU ; Wen Hua GAO ; Yuan Yuan CHI ; Hong Ling WEN ; Zhi Yu WANG ; Yan Yan SONG ; Xue Jie YU ;
Biomedical and Environmental Sciences 2014;27(2):111-117
OBJECTIVETo explore the role of HIV-1 tat gene variations in AIDS dementia complex (ADC) pathogenesis.
METHODSHIV-1 tat genes derived from peripheral spleen and central basal ganglia of an AIDS patient with ADC and an AIDS patient without ADC were cloned for sequence analysis. HIV-1 tat gene sequence alignment was performed by using CLUSTAL W and the phylogentic analysis was conducted by using Neighbor-joining with MEGA4 software. All tat genes were used to construct recombinant retroviral expressing vector MSCV-IRES-GFP/tat. The MSCV-IRES-GFP/tat was cotransfected into 293T cells with pCMV-VSV-G and pUMVC vectors to assemble the recombinant retrovirus. After infection of gliomas U87 cells with equal amount of the recombinant retrovirus, TNF-α, and IL-1β concentrations in the supernatant of U87 cells were determined with ELISA.
RESULTSHIV-1 tat genes derived from peripheral spleen and central basal ganglia of the AIDS patient with ADC and the other one without ADC exhibited genetic variations. Tat variations and amino acid mutation sites existed mainly at Tat protein core functional area (38-47aa). All Tat proteins could induce U87 cells to produce TNF-α and IL-1β, but the level of IL-1β production was different among Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen. The level of Tat proteins derived from the ADC patient's spleen, basal ganglia, and the non-ADC patient's spleen were obviously higher than that from the non-ADC patient's basal ganglia.
CONCLUSIONTat protein core functional area (38-47aa) may serve as the key area of enhancing the secretion of IL-1β. This may be related with the neurotoxicity of HIV-1 Tat.
AIDS Dementia Complex ; metabolism ; pathology ; virology ; Adult ; Amino Acid Sequence ; Basal Ganglia ; virology ; Cell Line, Tumor ; Gene Expression Regulation, Viral ; Genes, tat ; HIV-1 ; genetics ; pathogenicity ; Humans ; Interleukin-1beta ; biosynthesis ; genetics ; secretion ; Middle Aged ; Molecular Sequence Data ; Neuroglia ; pathology ; secretion ; Spleen ; virology ; Tumor Necrosis Factor-alpha ; biosynthesis ; genetics ; secretion ; tat Gene Products, Human Immunodeficiency Virus ; genetics ; physiology
5.Hepatitis B virus replication and viral gene expressions do not affect CDC37 level in hepatocytes in vitro.
Chaowu CHEN ; Bin ZHOU ; Ying XU ; Guifeng YANG ; Zhanhui WANG
Journal of Southern Medical University 2014;34(6):823-826
OBJECTIVETo study the influence of hepatitis B virus (HBV) replication and expressions of different viral genes on CDC37 level in hepatocytes.
METHODSWe amplified and cloned 6 HBV genes (P, preS1, preS2, S, C and X) into pCMV expression vectors, which were transfected in Huh7 and HepG2 hepatoma cell lines, and CDC37 expression level in the cells was detected using Western blotting. Wealso cloned the promoter sequence of CDC37 into pGL3 vector, and co-transfected pGL3 with pCMV recombinant plasmids into Huh7 and HepG2 cells and the fluorescent signals were detected. To study the influence of HBV replication on CDC37 expression, we constructed 1.28-copy overlength genomes of HBV genotypes B, C, D and CD recombinant. The overlength HBV genomes were transformed into Adeasier-1 cells for recombination and into 293 cells for packaging. Huh7 and HepG2 cell lines infected with the packaged HBV recombinant adenoviruses were examined for CDC37 expression with Western blotting.
RESULTSWestern blotting showed that the expression of different HBV genes did not obviously affect the protein level of CDC37 in the hepatocytes. The protein expression of HBV genes had no effect on the activity of CDC37 promoter. Huh7 and HepG2 cells infected with 1.28-copy HBV replicon showed no significant changes in the expression level of CDC37.
CONCLUSIONHBV replication and its gene expression have no effect on the level of CDC37 in hepatocytes in vitro.
Adenoviridae ; Cell Cycle Proteins ; metabolism ; Chaperonins ; metabolism ; Gene Expression Regulation, Viral ; Genetic Vectors ; Hep G2 Cells ; Hepatitis B virus ; genetics ; physiology ; Hepatocytes ; virology ; Humans ; Transfection ; Virus Replication
6.Effects of bm47 deletion on viral replication and transcription of Bombyx mori nucleopolyhedrovirus.
Chen ZHANG ; Zhen-Nan ZHU ; Jia YUAN ; Yang-Hui SHI ; Jian CHEN ; Zuo-Ming NIE ; Zheng-Bing LV ; Yao-Zhou ZHANG ; Wei YU
Chinese Journal of Virology 2014;30(3):285-291
		                        		
		                        			
		                        			Bombyx mori nucleopolyhedrovirus (BmNPV) bm47 gene is found in all sequenced lepidopteran nucleopolyhedroviruses (NPVs). It is one of the core genes of NPVs. However, the role of bm47 in the biological cycle of NPV remains unknown. In this study, the Red recombination system was used to knock out bm47 from BmNPV to construct bm47-ko-Bacmid in E. coli BW25113 system. Then bm47 gene was introduced back to the viral genome using the Bac-to-Bac system to create the repair virus bm47-re-Bacmid. TCID50 assay and real-time PCR (qPCR) were used to evaluate the effects of bm47 deletion on viral DNA replication, gene transcription, and protein expression. qPCR results showed that bm47 knock-out had no significant effect on viral DNA replication. However, the qPCR results showed that bm47-ko-Bacmid significantly decreased the transcription levels of early gene lef-3, late gene vp39, and very late gene p10 at 48 h and 72 h after viral transfection of BmN cells (P < 0.05). This work will provide a foundation for further studies on the biological function of BmNPV bm47 in viral replication and transcription.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Bombyx
		                        			;
		                        		
		                        			virology
		                        			;
		                        		
		                        			Gene Deletion
		                        			;
		                        		
		                        			Gene Expression Regulation, Viral
		                        			;
		                        		
		                        			Nucleopolyhedrovirus
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			physiology
		                        			;
		                        		
		                        			Transcription, Genetic
		                        			;
		                        		
		                        			Viral Proteins
		                        			;
		                        		
		                        			genetics
		                        			;
		                        		
		                        			metabolism
		                        			;
		                        		
		                        			Virus Replication
		                        			
		                        		
		                        	
7.Expression and lytic efficacy assessment of the Staphylococcus aureus phage SA4 lysin gene.
Anil Kumar MISHRA ; Mayank RAWAT ; Konasagara Nagaleekar VISWAS ; ABHISHEK ; Sujeet KUMAR ; Manjunatha REDDY
Journal of Veterinary Science 2013;14(1):37-43
		                        		
		                        			
		                        			Treatment of bovine mastitis caused by Staphylococcus (S.) aureus is becoming very difficult due to the emergence of multidrug-resistant strains. Hence, the search for novel therapeutic alternatives has become of great importance. Consequently, bacteriophages and their endolysins have been identified as potential therapeutic alternatives to antibiotic therapy against S. aureus. In the present study, the gene encoding lysin (LysSA4) in S. aureus phage SA4 was cloned and the nucleotide sequence was determined. Sequence analysis of the recombinant clone revealed a single 802-bp open reading frame encoding a partial protein with a calculated mass of 30 kDa. Results of this analysis also indicated that the LysSA4 sequence shared a high homology with endolysin of the GH15 phage and other reported phages. The LysSA4 gene of the SA4 phage was subsequently expressed in Escherichia coli. Recombinant LysSA4 induced the lysis of host bacteria in a spot inoculation test, indicating that the protein was expressed and functionally active. Furthermore, recombinant lysin was found to have lytic activity, albeit a low level, against mastitogenic Staphylococcus isolates of bovine origin. Data from the current study can be used to develop therapeutic tools for treating diseases caused by drug-resistant S. aureus strains.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Base Sequence
		                        			;
		                        		
		                        			Cloning, Molecular
		                        			;
		                        		
		                        			Gene Expression Regulation, Viral/physiology
		                        			;
		                        		
		                        			Mucoproteins/genetics/*metabolism
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Polymerase Chain Reaction/methods
		                        			;
		                        		
		                        			Recombinant Proteins
		                        			;
		                        		
		                        			Staphylococcus Phages/genetics/*metabolism/physiology
		                        			;
		                        		
		                        			Staphylococcus aureus/*virology
		                        			
		                        		
		                        	
9.Molecular characterization of Japanese encephalitis virus strains prevalent in Chinese swine herds.
Hao ZHENG ; Tongling SHAN ; Yu DENG ; Chunqing SUN ; Shishan YUAN ; Yang YIN ; Guangzhi TONG
Journal of Veterinary Science 2013;14(1):27-36
		                        		
		                        			
		                        			Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia and domestic pigs serve as the amplifying hosts. In the present study, the full genomic sequences of two JEV strains (HEN0701 and SH0601) isolated from pigs in China were determined and compared with other 12 JEV strains deposited in GenBank. These two strains had an 88.8% nucleotide sequence similarity and 97.9% deduced amino acid sequence homology. HEN0701 had high nucleotide sequence and high amino acid sequence identity with genotype I (GI) strains, while SH0601 had high nucleotide sequence and high amino acid sequence identity with GIII strains at both the gene and full genome levels. Further phylogenetic analysis showed that HEN0701 belonged to the JEV GI group and SH0601 was classified as a GIII strain. Analysis of codon usage showed there were a few differences between the GI and GIII strains in nucleotide composition and codon usage for the open reading frames.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cricetinae
		                        			;
		                        		
		                        			Encephalitis Virus, Japanese/classification/*genetics
		                        			;
		                        		
		                        			Encephalitis, Japanese/epidemiology/*veterinary/virology
		                        			;
		                        		
		                        			Gene Expression Regulation, Viral/physiology
		                        			;
		                        		
		                        			Genome, Viral
		                        			;
		                        		
		                        			Molecular Epidemiology
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Swine
		                        			;
		                        		
		                        			Swine Diseases/epidemiology/*virology
		                        			
		                        		
		                        	
10.Molecular characterization of Japanese encephalitis virus strains prevalent in Chinese swine herds.
Hao ZHENG ; Tongling SHAN ; Yu DENG ; Chunqing SUN ; Shishan YUAN ; Yang YIN ; Guangzhi TONG
Journal of Veterinary Science 2013;14(1):27-36
		                        		
		                        			
		                        			Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia and domestic pigs serve as the amplifying hosts. In the present study, the full genomic sequences of two JEV strains (HEN0701 and SH0601) isolated from pigs in China were determined and compared with other 12 JEV strains deposited in GenBank. These two strains had an 88.8% nucleotide sequence similarity and 97.9% deduced amino acid sequence homology. HEN0701 had high nucleotide sequence and high amino acid sequence identity with genotype I (GI) strains, while SH0601 had high nucleotide sequence and high amino acid sequence identity with GIII strains at both the gene and full genome levels. Further phylogenetic analysis showed that HEN0701 belonged to the JEV GI group and SH0601 was classified as a GIII strain. Analysis of codon usage showed there were a few differences between the GI and GIII strains in nucleotide composition and codon usage for the open reading frames.
		                        		
		                        		
		                        		
		                        			Animals
		                        			;
		                        		
		                        			Cell Line
		                        			;
		                        		
		                        			Cricetinae
		                        			;
		                        		
		                        			Encephalitis Virus, Japanese/classification/*genetics
		                        			;
		                        		
		                        			Encephalitis, Japanese/epidemiology/*veterinary/virology
		                        			;
		                        		
		                        			Gene Expression Regulation, Viral/physiology
		                        			;
		                        		
		                        			Genome, Viral
		                        			;
		                        		
		                        			Molecular Epidemiology
		                        			;
		                        		
		                        			Phylogeny
		                        			;
		                        		
		                        			Swine
		                        			;
		                        		
		                        			Swine Diseases/epidemiology/*virology
		                        			
		                        		
		                        	
            
Result Analysis
Print
Save
E-mail