1.Transcriptome analysis of Salix matsudana under cadmium stress.
Jimin CAO ; Shuangcai LI ; De HE
Chinese Journal of Biotechnology 2020;36(7):1365-1377
With the expanded application of heavy metal cadmium, soil cadmium pollution is more and more serious. In this study, using Salix matsudana as a phytoremediation candidate, we observed changes of gene expression and metabolic pathway after 1, 7 and 30 days under 2.5 mg/L and 50 mg/L cadmium stress. The result of transcriptome sequencing showed that we obtained 102 595 Unigenes; 26 623 and 32 154 differentially expressed genes (DEG) in the same concentration and different stress time; 8 550, 3 444 and 11 428 DEG with different concentrations at the same time; 25 genes closely related to cadmium stress response were screened. The changes of genes expression (such as metallothionein, ABC transporter, zinc and manganese transporter) depended on both concentration of cadmium and exposure time. The expression of several genes was obviously up-regulated after cadmium stress, for example 3,6-deoxyinosinone ketolase (ROT3) in brassinolide synthesis pathway and flavonoid synthase (FLS), flavanone-3-hydroxylase (F3H) in the synthesis pathway of brassinolide. In addition, GO analysis shows that GO entries were mainly enriched in metabolic processes including cellular processes, membranes, membrane fractions, cells, cellular fractions, catalytic activation and binding proteins in response to cadmium stress, whose number would increase along with cadmium concentration and exposure time. The reliability of transcriptome information was verified by qPCR and physiological experimental data. Response mechanisms of S. matsudana after cadmium stress were analyzed by transcriptome sequencing, which provided theoretical guidance for remediation of cadmium pollution in soil by S. matsudana.
Biodegradation, Environmental
;
Cadmium
;
toxicity
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
drug effects
;
Plant Proteins
;
genetics
;
Reproducibility of Results
;
Salix
;
drug effects
;
genetics
;
Stress, Physiological
;
genetics
;
Transcriptome
;
drug effects
2.Drying temperature affects rice seed vigor via gibberellin, abscisic acid, and antioxidant enzyme metabolism.
Yu-Tao HUANG ; Wei WU ; Wen-Xiong ZOU ; Hua-Ping WU ; Dong-Dong CAO
Journal of Zhejiang University. Science. B 2020;21(10):796-810
Seed vigor is a key factor affecting seed quality. The mechanical drying process exerts a significant influence on rice seed vigor. The initial moisture content (IMC) and drying temperature are considered the main factors affecting rice seed vigor through mechanical drying. This study aimed to determine the optimum drying temperature for rice seeds according to the IMC, and elucidate the mechanisms mediating the effects of drying temperature and IMC on seed vigor. Rice seeds with three different IMCs (20%, 25%, and 30%) were dried to the target moisture content (14%) at four different drying temperatures. The results showed that the drying temperature and IMC had significant effects on the drying performance and vigor of the rice seeds. The upper limits of drying temperature for rice seeds with 20%, 25%, and 30% IMCs were 45, 42, and 38 °C, respectively. The drying rate and seed temperature increased significantly with increasing drying temperature. The drying temperature, drying rate, and seed temperature showed extremely significant negative correlations with germination energy (GE), germination rate, germination index (GI), and vigor index (VI). A high IMC and drying temperature probably induced a massive accumulation of hydrogen peroxide (H2O2) and superoxide anions in the seeds, enhanced superoxide dismutase (SOD) and catalase (CAT) activity, and increased the abscisic acid (ABA) content. In the early stage of seed germination, the IMC and drying temperature regulated seed germination through the metabolism of H2O2, gibberellin acid (GA), ABA, and α-amylase. These results indicate that the metabolism of reactive oxygen species (ROS), antioxidant enzymes, GA, ABA, and α-amylase might be involved in the mediation of the effects of drying temperature on seed vigor. The results of this study provide a theoretical basis and technical guidance for the mechanical drying of rice seeds.
Abscisic Acid/metabolism*
;
Antioxidants/pharmacology*
;
Catalase/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Germination
;
Gibberellins/metabolism*
;
Hydrogen Peroxide/chemistry*
;
Malondialdehyde/chemistry*
;
Oryza/metabolism*
;
Oxygen/chemistry*
;
Plant Proteins/genetics*
;
Reactive Oxygen Species
;
Seeds/metabolism*
;
Superoxide Dismutase/metabolism*
;
Superoxides/chemistry*
;
Temperature
;
Weather
;
alpha-Amylases/metabolism*
3.Mechanism of butyl alcohol extract of Baitouweng Decoction (BAEB) on Candida albicans biofilms based on pH signal pathway.
Yun-Xia WANG ; Ke-Long MA ; Yan WANG ; Da-Qiang WU ; Jing SHAO ; Tian-Ming WANG ; Chang-Zhong WANG
China Journal of Chinese Materia Medica 2019;44(2):350-356
This study aimed to investigate the effect of butyl alcohol extract of Baitouweng Decoction( BAEB) on Candida albicans biofilms based on pH signal pathway. The morphology of biofilms of the pH mutants was observed by scanning electron microscope. The biofilm thickness of the pH mutants was measured by CLSM. The biofilm activity of the pH mutants was analyzed by microplate reader.The biofilm damage of the pH mutants was detected by flow cytometry. The expression of pH mutant biofilm-related genes was detected by qRT-PCR. The results showed that the deletion of PHR1 gene resulted in the defect of biofilm,but there were more substrates for PHR1 complementation. BAEB had no significant effect on the two strains. RIM101 gene deletion or complementation did not cause significant structural damage,but after BAEB treatment,the biofilms of both strains were significantly inhibited. For the biofilm thickness,PHR1 deletion or complementation caused the thickness to decrease,after BAEB treatment,the thickness of the two strains did not change significantly. However,RIM101 gene deletion or complementation had little effect on the thickness,and the thickness of the two strains became thinner after adding BAEB. For biofilm activity,PHR1 deletion or complementation and RIM101 deletion resulted in decreased activity,RIM101 complementation did not change significantly; BAEB significantly inhibited biofilm activity of PHR1 deletion,PHR1 complemetation,RIM101 deletion and RIM101 complemetation strains. For the biofilm damage,PHR1 gene deletion or complementation,RIM101 gene deletion or complementation all showed different degrees of damage; after adding BAEB,the damage rate of PHR1 deletion or complementation was not significantly different,but the damage rate of RIM101 deletion or complementation was significantly increased. Except to the up-regulation of HSP90 gene expression,ALS3,SUN41,HWP1,UME6 and PGA10 genes of PHR1 deletion,PHR1 complementation,RIM101 deletion,and RIM101 complementation strains showed a downward expression trend. In a word,this study showed that mutations in PHR1 and RIM101 genes in the pH signaling pathway could enhance the sensitivity of the strains to the antifungal drug BAEB,thus inhibiting the biofilm formation and related genes expression in C. albicans.
1-Butanol
;
Biofilms
;
drug effects
;
Candida albicans
;
drug effects
;
Drugs, Chinese Herbal
;
pharmacology
;
Fungal Proteins
;
Gene Expression Regulation, Fungal
;
Hydrogen-Ion Concentration
;
Plant Extracts
;
pharmacology
;
Signal Transduction
4.Glucosides of chaenomeles speciosa attenuate ischemia/reperfusion-induced brain injury by regulating NF-κB P65/TNF-α in mouse model.
Jing MA ; Wenlong HE ; Chongyang GAO ; Ruiyun YU ; Peng XUE ; Yongchao NIU
Journal of Zhejiang University. Medical sciences 2019;48(3):289-295
OBJECTIVE:
To investigate the effect and mechanism of glucosides of chaenomeles speciosa (GCS) on ischemia/reperfusion-induced brain injury in mouse model.
METHODS:
Fifty 8-week C57BL/C mice were randomly divided into five groups with 10 in each group:sham group, model group, GCS 30 mg/kg group, GCS 60 mg/kg group and GCS 90 mg/kg group, and the GCS was administrated by gavage (once a day) for 14 d. HE staining was performed to investigate the cell morphology; the Zea-Longa scores were measured for neurological activity; TUNEL staining was performed to investigate the cell apoptosis; ELISA was used to detected the oxidative stress and inflammation; Western Blot was performed to investigate the key pathway and neurological functional molecules.
RESULTS:
Compared with the sham group, the brain tissues in model group were seriously damaged, presenting severe cell apoptosis, oxidative stress and inflammation, associated with increased NF-κB P65 and TNF-α levels as well as decreased myelin associate glycoprotein (MAG) and oligodendrocyte-myelin glycoprotein (OMgp)levels (all <0.01). Compared with the model group, the brain tissues in GCS groups were ameliorated, and cell apoptosis, oxidative stress and inflammation were inhibited, associated with decreased NF-κB P65 and TNF-α levels as well as increased MAG and OMgp levels (all <0.01), which were more markedly in GCS 60 mg/kg group.
CONCLUSIONS
GCS can inhibit the NF-κB P65 and TNF-α, reduce the oxidative stress and inflammation, decrease the cell apoptosis in mouse ischemia/reperfusion-induced brain injury model, and 60 mg/kg GCS may be the optimal dose.
Animals
;
Brain
;
drug effects
;
Brain Injuries
;
drug therapy
;
Gene Expression Regulation
;
drug effects
;
Glucosides
;
pharmacology
;
therapeutic use
;
Mice
;
Mice, Inbred C57BL
;
NF-kappa B
;
genetics
;
Oxidative Stress
;
drug effects
;
Plant Extracts
;
pharmacology
;
Random Allocation
;
Rosaceae
;
chemistry
;
Tumor Necrosis Factor-alpha
;
genetics
5.Transcriptomic analysis in Anemone flaccida rhizomes reveals ancillary pathway for triterpene saponins biosynthesis and differential responsiveness to phytohormones.
Guo-Yan MO ; Fang HUANG ; Yin FANG ; Lin-Tao HAN ; Kayla K PENNERMAN ; Li-Jing BU ; Xiao-Wei DU ; Joan W BENNETT ; Guo-Hua YIN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):131-144
Anemone flaccida Fr. Schmidt is a perennial medicinal herb that contains pentacyclic triterpenoid saponins as the major bioactive constituents. In China, the rhizomes are used as treatments for a variety of ailments including arthritis. However, yields of the saponins are low, and little is known about the plant's genetic background or phytohormonal responsiveness. Using one-quarter of the 454 pyrosequencing information from the Roche GS FLX Titanium platform, we performed a transcriptomic analysis to identify 157 genes putatively encoding 26 enzymes involved in the synthesis of the bioactive compounds. It was revealed that there are two biosynthetic pathways of triterpene saponins in A. flaccida. One pathway depends on β-amyrin synthase and is similar to that found in other plants. The second, subsidiary ("backburner") pathway is catalyzed by camelliol C synthase and yields β-amyrin as minor byproduct. Both pathways used cytochrome P450-dependent monooxygenases (CYPs) and family 1 uridine diphosphate glycosyltransferases (UGTs) to modify the triterpenoid backbone. The expression of CYPs and UGTs were quite different in roots treated with the phytohormones methyl jasmonate, salicylic acid and indole-3-acetic acid. This study provides the first large-scale transcriptional dataset for the biosynthetic pathways of triterpene saponins and their phytohormonal responsiveness in the genus Anemone.
Anemone
;
drug effects
;
genetics
;
metabolism
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Cytochrome P-450 Enzyme System
;
genetics
;
metabolism
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
drug effects
;
Glycosyltransferases
;
genetics
;
metabolism
;
Oleanolic Acid
;
analogs & derivatives
;
metabolism
;
Plant Growth Regulators
;
pharmacology
;
Plant Proteins
;
genetics
;
metabolism
;
Plants, Medicinal
;
Rhizome
;
drug effects
;
genetics
;
metabolism
;
Saponins
;
metabolism
;
Triterpenes
;
metabolism
6.Effects of methyl jasmonate on metabolism of topical alkaloids and expression of relate genes in Atropa belladonna.
Yi YANG ; Cui-Ping ZHANG ; Xing LIU ; Yue WEI ; Neng-Biao WU
China Journal of Chinese Materia Medica 2018;43(20):4044-4049
Hyoscyamine and scopolamine are important secondary metabolites of tropane alkaloid in Atropa belladonna with pharmacological values in many aspects.In this study, the seedlings of A.belladonna were planted by soil culture and treated with different concentrations of methyl jasmonate (MeJA). The contents of hyoscyamine and scopolamine,the upstream products in alkaloid synthesis,and the expression levels of key enzyme genes PMT, TR Ⅰ and H6H in secondary metabolites of A. belladonna seedlings were measured to clarify the mechanism of MeJA regulating alkaloids synthesis.The results showed that MeJA(200 μmol·L⁻¹) treatment was more favorable for the accumulation of alkaloids.The content of putrescine was almost consistent with the change of key enzymes activities in the synthesis of putrescine,the both increased first and then decreased with the increased MeJA concentration and the content of putrescine reached the highest at 200 μmol·L⁻¹ MeJA.Further detection of gene expression of PMT, TR Ⅰ and H6H in TAs synthesis pathway showed that no significant trend in PMT gene expression levels.The expression levels of TR Ⅰ and H6H in leaves and roots under 200 μmol·L⁻¹ MeJA were the highest.It can be speculated that the regulation of the formation of hyoscyamine and scopolamine by MeJA mainly through affecting the expression of key enzyme genes.Appropriate concentration of MeJA increased the gene expression of TR Ⅰ in both leaves and roots as well as H6H in roots,promoting the accumulation of alkaloids and the conversion of hyoscyamine to scopolamine.
Acetates
;
pharmacology
;
Atropa belladonna
;
drug effects
;
genetics
;
metabolism
;
Cyclopentanes
;
pharmacology
;
Gene Expression Regulation, Plant
;
Hyoscyamine
;
metabolism
;
Oxylipins
;
pharmacology
;
Plant Leaves
;
metabolism
;
Plant Roots
;
metabolism
;
Scopolamine
;
metabolism
7.Inhibitory effect of different Dendrobium species on LPS-induced inflammation in macrophages via suppression of MAPK pathways.
Qiang ZENG ; Chun-Hay KO ; Wing-Sum SIU ; Kai-Kai LI ; Chun-Wai WONG ; Xiao-Qiang HAN ; Liu YANG ; Clara Bik-San LAU ; Jiang-Miao HU ; Ping-Chung LEUNG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(7):481-489
Dendrobii Caulis (DC), named 'Shihu' in Chinese, is a precious herb in traditional Chinese medicine. It is widely used to nourish stomach, enhance body fluid production, tonify "Yin" and reduce heat. More than thirty Dendrobium species are used as folk medicine. Some compounds from DC exhibit inhibitory effects on macrophage inflammation. In the present study, we compared the anti-inflammatory effects among eight Dendrobium species. The results provided evidences to support Dendrobium as folk medicine, which exerted its medicinal function partially by its inhibitory effects on inflammation. To investigate the anti-inflammatory effect of Dendrobium species, mouse macrophage cell line RAW264.7 was activated by lipopolysaccharide. The nitric oxide (NO) level was measured using Griess reagent while the pro-inflammatory cytokines were tested by ELISA. The protein expressions of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2) and mitogen-activated protein kinases (MAPKs) phosphorylation were evaluated by Western blotting analysis. Among the eight Dendrobium species, both water extracts of D. thyrsiflorum B.S.Williams (DTW) and D. chrysotoxum Lindl (DCHW) showed most significant inhibitory effects on NO production in a concentration-dependent manner. DTW also significantly reduced TNF-α, MCP-1, and IL-6 production. Further investigations showed that DTW suppressed iNOS and COX-2 expression as well as ERK and JNK phosphorylation, suggesting that the inhibitory effects of DTW on LPS-induced macrophage inflammation was through the suppression of MAPK pathways. In conclusion, D. thyrsiflorum B.S.Williams was demonstrated to have potential to be used as alternative or adjuvant therapy for inflammation.
Animals
;
Anti-Inflammatory Agents
;
pharmacology
;
Cyclooxygenase 2
;
genetics
;
Cytokines
;
metabolism
;
Dendrobium
;
chemistry
;
Gene Expression Regulation, Enzymologic
;
drug effects
;
Inflammation
;
chemically induced
;
drug therapy
;
Lipopolysaccharides
;
Macrophages
;
drug effects
;
enzymology
;
Mice
;
Mitogen-Activated Protein Kinases
;
antagonists & inhibitors
;
genetics
;
metabolism
;
Nitric Oxide
;
analysis
;
Nitric Oxide Synthase Type II
;
genetics
;
Phosphorylation
;
drug effects
;
Plant Extracts
;
pharmacology
;
RAW 264.7 Cells
;
Signal Transduction
;
drug effects
8.Antioxidant and Anti-aging Activities of Silybum Marianum Protein Hydrolysate in Mice Treated with D-galactose.
Shu Yun ZHU ; Ning JIANG ; Jie TU ; Jing YANG ; Yue ZHOU
Biomedical and Environmental Sciences 2017;30(9):623-631
OBJECTIVEIn the present study, we investigated the antioxidant and anti-aging effects of Silybum marianum protein hydrolysate (SMPH) in D-galactose-treated mice.
METHODSD-galactose (500 mg/kg body weight) was intraperitoneally injected daily for 7 weeks to accelerate aging, and SMPH (400, 800, 1,200 mg/kg body weight, respectively) was simultaneously administered orally. The antioxidant and anti-aging effects of SMPH in the liver and brain were measured by biochemical assays. Transmission electron microscopy (TEM) was performed to study the ultrastructure of liver mitochondri.
RESULTSSMPH decreased triglyceride and cholesterol levels in the D-galactose-treated mice. It significantly elevated the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), and total antioxidant capacity (T-AOC), which were suppressed by D-galactose. Monoamine oxidase (MAO) and malondialdehyde (MDA) levels as well as the concentrations of caspase-3 and 8-OHdG in the liver and brain were significantly reduced by SMPH. Moreover, it increased Bcl-2 levels in the liver and brain. Furthermore, SMPH significantly attenuated D-galactose-induced liver mitochondrial dysfunction by improving the activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase as well as mitochondrial membrane potential (ΔΨm) and fluidity. TEM showed that the degree of liver mitochondrial damage was significantly decreased by SMPH.
CONCLUSIONThe results indicated that SMPH protects against D-galactose-induced accelerated aging in mice through its antioxidant and anti-aging activities.
Aging ; drug effects ; Animals ; Antioxidants ; pharmacology ; Brain ; drug effects ; Caspase 3 ; metabolism ; Galactose ; toxicity ; Gene Expression Regulation, Enzymologic ; drug effects ; Glutathione Peroxidase ; metabolism ; Male ; Malondialdehyde ; metabolism ; Maze Learning ; drug effects ; Mice ; Milk Thistle ; chemistry ; Mitochondria, Liver ; drug effects ; Oxidative Stress ; drug effects ; Plant Proteins ; chemistry ; pharmacology ; Protective Agents ; pharmacology ; Protein Hydrolysates ; chemistry ; pharmacology ; Superoxide Dismutase ; metabolism
9.Atractylodes lancea rhizome water extract reduces triptolide-induced toxicity and enhances anti-inflammatory effects.
Yuan WEI ; Dan-Juan SUI ; Hai-Miao XU ; Zhen OUYANG ; Na WU ; Du-Jun WANG ; Xiao-Yan ZHANG ; Da-Wei QIAN
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):905-911
The present study was designed to explore the influence of water extracts of Atractylodes lancea rhizomes on the toxicity and anti-inflammatory effects of triptolide (TP). A water extract was prepared from A. lancea rhizomes and co-administered with TP in C57BL/6 mice. The toxicity was assayed by determining serum biochemical parameters and visceral indexes and by liver histopathological analysis. The hepatic CYP3A expression levels were detected using Western blotting and RT-PCR methods. The data showed that the water extract of A. lancea rhizomes reduced triptolide-induced toxicity, probably by inducing the hepatic expression of CYP3A. The anti-inflammatory effects of TP were evaluated in mice using a xylene-induced ear edema test. By comparing ear edema inhibition rates, we found that the water extract could also increase the anti-inflammatory effects of TP. In conclusion, our results suggested that the water extract of A. lancea rhizomes, used in combination with TP, has a potential in reducing TP-induced toxicity and enhancing its anti-inflammatory effects.
Animals
;
Anti-Inflammatory Agents
;
isolation & purification
;
pharmacology
;
Atractylodes
;
chemistry
;
Cytochrome P-450 Enzyme System
;
genetics
;
Diterpenes
;
toxicity
;
Edema
;
chemically induced
;
pathology
;
Enzyme Induction
;
drug effects
;
Epoxy Compounds
;
toxicity
;
Gene Expression Regulation
;
drug effects
;
Herb-Drug Interactions
;
Liver
;
drug effects
;
pathology
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Phenanthrenes
;
toxicity
;
Plant Extracts
;
isolation & purification
;
pharmacology
;
Plants, Medicinal
;
chemistry
;
Rhizome
;
chemistry
;
Water
;
chemistry
10.Effects of Gardenia jasminoides extracts on cognition and innate immune response in an adult Drosophila model of Alzheimer's disease.
Wei-Wei MA ; Ye TAO ; Yan-Ying WANG ; I-Feng PENG
Chinese Journal of Natural Medicines (English Ed.) 2017;15(12):899-904
Herbal extracts have been extensively used worldwide for their application on memory improvement, especially among aged and memory-deficit populations. In the present study, the memory loss induced by human Abeta protein over-expression in fruitfly Alzheimer's disease (AD) model was rescued by multiple extracts from Gardenia jasminoides. Three extracts that rich with gardenia yellow, geniposide, and gardenoside components showed distinct rescue effect on memory loss. Further investigation on adding gardenoside into a formula of Ganoderma lucidum, Panax notoginseng and Panax ginseng (GPP) also support its therapeutic effects on memory improvement. Interestingly, the application of GPP and gardenoside did not alter the accumulation of Abeta proteins but suppressed the expression of immune-related genes in the brain. These results revealed the importance and relevancy of anti-inflammation process and the underlying mechanisms on rescuing memory deficits, suggesting the potential therapeutic use of the improved GPP formulation in improving cognition in defined population in the future.
Alzheimer Disease
;
drug therapy
;
Animals
;
Antimicrobial Cationic Peptides
;
genetics
;
Brain
;
drug effects
;
immunology
;
Cognition
;
drug effects
;
Disease Models, Animal
;
Drosophila
;
Drosophila Proteins
;
genetics
;
Gardenia
;
chemistry
;
Gene Expression Regulation
;
drug effects
;
Immunity, Innate
;
drug effects
;
Iridoids
;
chemistry
;
isolation & purification
;
pharmacology
;
Plant Extracts
;
chemistry
;
isolation & purification
;
pharmacology
;
Polymerase Chain Reaction

Result Analysis
Print
Save
E-mail