1.Effect of low frequency low intensity electromagnetic fields on maturation and mineralization of rat skull osteoblasts in vitro.
Baoying ZHU ; Jian ZHOU ; Yuhai GAO ; Wengui SHI ; Zhenlong WEI ; Wenyuan LI ; Yuanyuan WANG ; Keming CHEN
Journal of Zhejiang University. Medical sciences 2017;46(6):585-592
Objective: To compare the effects of 50 Hz 1.8 mT sinusoidal magnetic field (SEMF) and 50 Hz 0.6 mT pulsed electromagnetic field(PEMF) on the maturation and mineralization of rat calvaria osteoblasts. Methods: Primary cultured rat calvarial osteoblasts were divided into 3 groups:blank control group, SEMF group and PEMF group. The rats in SEMT and PEMT groups were treated with 50 Hz 1.8 mT SEMF or 50 Hz 0.6 mT PEMF for 90 min/d, respectively. Western blotting and Real-time RT-PCR were used to detect the protein and mRNA expressions of Collagen-1, bone morphogenetic protein 2 (BMP-2), osterix (OSX) and Runt-associated transcription factor 2(Runx-2). The alkaline phosphatase(ALP) activity was detected by ALP test kits at d6 and d9 after treatment, and by ALP staining using azo coupling at d10 after treatment. The formation of calcium nodules was observed by alizarin red staining. Results: Compared with blank control group, the protein and mRNA expressions of Collagen-1, BMP-2, OSX and Runx-2 in SEMT and PEMT groups were significantly increased (P <0.01 or P <0.05); while the mRNA expressions of Collagen-1 and BMP-2 in PEMF group were significantly higher than those in SEMF group. After 6 days treatment, the activity of ALP in PEMF group was significantly higher than that in blank control group (P<0.05), while such difference was not observed in SEMF group (P0.05); after 9 days treatment, the activities of ALP in both PEMF and SEMP groups were significantly higher than that in blank control group (all P<0.05), but the difference between PEMF and SEMF groups was not significant (P0.05). After 10 days treatment, ALP staining was increased in both PEMF and SEMF groups compared with that in blank control group (all P<0.01), and the stained area was bigger in PEMF group than that in SEMF group (P<0.05). After 12 days treatment, calcium nodules were increased in PEMF and SEMF groups compared with that in blank control group (all P<0.01), and more calcium nodules were observed in PEMF group than SEMF group (P<0.05). Conclusion: Both 50 Hz 1.8 mT that in SEMF and 50 Hz 0.6 mT PEMF can promote the maturation and mineralization of osteoblasts, and the effect of PEMF is more marked.
Animals
;
Calcification, Physiologic
;
drug effects
;
Cell Differentiation
;
Cells, Cultured
;
Electromagnetic Fields
;
Gene Expression Regulation, Developmental
;
radiation effects
;
Magnetic Fields
;
Osteoblasts
;
cytology
;
radiation effects
;
Rats
;
Skull
;
drug effects
2.Effect of curcumin on radiosensitization of CNE-2 cells and its mechanism.
Qi-Rui WANG ; Hao-Ning FAN ; Zhi-Xin YIN ; Hong-Bing CAI ; Meng SHAO ; Jian-Xin DIAO ; Yuan-Liang LIU ; Xue-Gang SUN ; Li TONG ; Qin FAN
China Journal of Chinese Materia Medica 2014;39(3):507-510
OBJECTIVETo investigate the effect of curcumin (Cur) on radiosensitivity of nasopharyngeal carcinoma cell CNE-2 and its mechanism.
METHODThe effect of curcumin on radiosensitivity was determined by the clone formation assay. The cell survival curve was fitted by Graph prism 6. 0. The changes in cell cycle were analyzed by flow cytometry (FCM). The differential expression of long non-coding RNA was detected by gene chip technology. Part of differentially expressed genes was verified by Real-time PCR.
RESULTAfter 10 micro mol L-1 Cur had worked for 24 h, its sensitization enhancement ratio was 1. 03, indicating that low concentration of curcumin could increase the radiosensitivity of nasopharyngeal carcinoma cells; FCM displayed a significant increase of G2 phase cells and significant decrease of S phase cells in the Cur combined radiation group. In the Cur group, the GUCY2GP, H2BFXP, LINC00623 IncRNA were significantly up-regulated and ZRANB2-AS2 LOC100506835, FLJ36000 IncRNA were significantly down-regulated.
CONCLUSIONCur has radiosensitizing effect on human nasopharyngeal carcinoma CNE-2 cells. Its mechanism may be related to the changes in the cell cycle distribution and the expression of long non-coding IncRNA.
Cell Cycle ; drug effects ; radiation effects ; Cell Line, Tumor ; Cell Survival ; drug effects ; radiation effects ; Curcumin ; pharmacology ; Gene Expression Regulation, Neoplastic ; drug effects ; radiation effects ; Humans ; RNA, Long Noncoding ; genetics ; Radiation Tolerance ; drug effects
3.Angelica sinensis polysaccharides delay aging of hematopoietic stem cells through inhibitting oxidative damge.
Xian-Ping ZHANG ; Qian-Xing WANG ; Bin CHEN ; Qiangi WEI ; Chun-Yan XU ; Rong JIANG ; Jian-Wei WANG ; Ya-Ping WANG
China Journal of Chinese Materia Medica 2013;38(3):407-412
OBJECTIVEThe effect of angelica sinensis polysaccharides (ASP) on the production of reactive oxygen specie (ROS), the capability of total anti-oxidant (T-AOC), and the expression of p16 in mRNA level in mice hematopoietic stem cells (HSCs) were observed to explore the underlying mechanism that ASP delay aging of HSCs in vivo.
METHODC57BL/6J mice were randomly divided into normal group, aging group, and the above groups treated with ASP. Mice were uniformly explored in X-ray (3.0 Gy/8 F) to erect model of aging. Normal and aging ASP intervention groups mice were treated with ASP by intragastric administration, while normal and aging groups were treated with equal-volume NS during X-ray irradiation. Mice HSCs were isolated by magnetic cell sorting and cultured in vitro. Senescence-associated beta-galactosidase (SA-beta-Gal) staining was used to detect aging HSCs. Cell cycles analysis and CFU-Mix cultivation were used to evaluate the capability of self-renewing and colony forming in HSCs. The production of ROS in HSCs was evaluated by flow cytometry analysis and immunofluorescence assess, respectively. T-AOC was detected by chemical colorimetric method. The expression of p16 was determined by real-time quantitative PCR (qRT-PCR).
RESULTExogenous X-ray irradiation induced HSCs aging was compared with normal group without irradiation. Biological feature of HSCs in aging group with X-ray irradiation as follows: The percentage of SA-beta-Gal positive cells, the ratio of G1 stages and the production of ROS were significantly increased , the expression of p16 in mRNA level was also upregulated. The capacility of colony forming and T-AOC in HSCs were decreased. ASP could significantly decrease the percentage of SA-beta-Gal positive cells, the ratio of G1 stages and the production of ROS in HSCs, and downregulate the expression of p16 in mRNA level in HSCs contrast to aging group without ASP treatment. In addition, ASP could remarkably increase T-AOC and the capacility of colony forming in HSCs compared with aging group without ASP treatment.
CONCLUSIONX-ray (3.0 Gy/8 F) could induce mice HSCs aging. ASP could delay senescence HSCs aging which maybe partly ascribed to the inhibition of oxidative damage and the downregulation of p16 mRNA expression.
Aging ; drug effects ; radiation effects ; Angelica sinensis ; chemistry ; Animals ; Cell Cycle ; drug effects ; radiation effects ; Cells, Cultured ; Cellular Senescence ; drug effects ; radiation effects ; Cyclin-Dependent Kinase Inhibitor p16 ; genetics ; Female ; Flow Cytometry ; Gene Expression ; drug effects ; radiation effects ; Hematopoietic Stem Cells ; drug effects ; metabolism ; radiation effects ; Male ; Mice ; Mice, Inbred C57BL ; Oxidative Stress ; drug effects ; radiation effects ; Polysaccharides ; pharmacology ; Random Allocation ; Reactive Oxygen Species ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Time Factors ; X-Rays ; beta-Galactosidase ; metabolism
4.Radioprotective effect of adenine on irradiation-induced apoptosis.
Xiao-Yan WANG ; Zeng-Chun MA ; Shuai SHAO ; Qian HONG ; Yu-Guang WANG ; Hong-Ling TAN ; Xiao-Qin LU ; Zhi DONG ; Yue GAO
Chinese Journal of Natural Medicines (English Ed.) 2013;11(2):139-144
AIM:
To investigate the radioprotective effect of adenine on irradiated lymphocytes and discover the possible mechanisms of protection.
METHODS:
Lymphocytes were pretreated for 12 h with adenine (0.001-0.1 μmol·L(-1)) and then exposed to 4 Gy radiation. Cell viability was observed by the MTS assay, apoptosis was detected by Annexin V-FITC/PI, DNA ladder, and caspase 3/7 activity. Caspase-9, Bax, and Bcl-2 gene expression was investigated by RT-PCR.
RESULTS:
Irradiation increased cell death and DNA fragmentation. Pretreatment with adenine significantly reversed this tendency. Furthermore, several anti-apoptotic characteristics of adenine were determined, including the ability to inhibit caspase 3/7, upregulate B-cell lymphoma (Bcl-2) and downregulate Bcl-2- associated X (Bax), capase-9 gene expression in 4 Gy-irradiated AHH-1 cells.
CONCLUSION
The results suggest that adenine had a radioprotective effect to inhibit apoptosis in a concentration dependent manner.
Adenine
;
pharmacology
;
Apoptosis
;
drug effects
;
radiation effects
;
Caspase 9
;
genetics
;
metabolism
;
Cell Line
;
Cell Survival
;
drug effects
;
radiation effects
;
Gamma Rays
;
Gene Expression
;
drug effects
;
radiation effects
;
Humans
;
Lymphocytes
;
drug effects
;
radiation effects
;
Proto-Oncogene Proteins c-bcl-2
;
genetics
;
metabolism
;
Radiation-Protective Agents
;
pharmacology
;
bcl-2-Associated X Protein
;
genetics
;
metabolism
5.Silencing of osteopontin promotes the radiosensitivity of breast cancer cells by reducing the expression of hypoxia inducible factor 1 and vascular endothelial growth factor.
Li YANG ; Wei ZHAO ; Wen-Shu ZUO ; Ling WEI ; Xian-Rang SONG ; Xing-Wu WANG ; Gang ZHENG ; Mei-Zhu ZHENG
Chinese Medical Journal 2012;125(2):293-299
BACKGROUNDOsteopontin (OPN) is a secreted phosphoglycoprotein (SSP) that is overexpressed in a variety of tumors and was regarded as a molecular marker of tumors. In this study, we intended to demonstrate the role of OPN in human breast cancer cell line MDA-MB-231.
METHODSRecombinant plasmid expressing small interfering RNA (siRNA) specific to OPN mRNA was transfected into MDA-MB-231 cells to generate the stable transfected cell line MDA-MB-343, and the empty plasmid tansfected cells (MDA-MB-neg) or wildtype MDA-MB-231 cells were used as control cells respectively. Expression of OPN, hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) proteins was analyzed by Western blotting analysis. The radiosensitivity of cells was determined by detecting cell apoptosis, cell proliferation and cell senescence.
RESULTSHIF-1 and VEGF proteins in MDA-MB-343 cells were significantly downregulated upon the efficient knockdown of OPN expression under either hypoxia or normoxia environment. Moreover, expression of OPN protein was upregualted upon hypoxic culture. Stable OPN-silencing also decreased cell invasion, increased cell apoptosis and cell senescence, as well as reduced clonogenic survival, resulting in increase radiation tolerance.
CONCLUSIONSSuppression of OPN gene expression can enhance radiosensitivity and affect cell apoptosis in breast cancer cells. OPN seems to be an attractive target for the improvement of radiotherapy.
Breast Neoplasms ; genetics ; metabolism ; Cell Line, Tumor ; Female ; Gene Expression Regulation, Neoplastic ; drug effects ; genetics ; Humans ; Hypoxia-Inducible Factor 1 ; genetics ; metabolism ; Osteopontin ; genetics ; metabolism ; RNA, Small Interfering ; Radiation Tolerance ; genetics ; physiology ; Reverse Transcriptase Polymerase Chain Reaction ; Vascular Endothelial Growth Factor A ; genetics ; metabolism
6.Differential responses to UVB irradiation in human keratinocytes and epidermoid carcinoma cells.
Mei Juan ZHOU ; Li ZHENG ; Ling GUO ; Wei Ling LIU ; Chao LV ; Li Hong JIANG ; Cheng Shan OU ; Zhen Hua DING
Biomedical and Environmental Sciences 2012;25(5):583-589
OBJECTIVETo examine UVB-induced responses in normal human keratinocytes (HaCaT) and epidermoid carcinoma cells (A431) at the cellular and molecular level, and investigated the protective effect of salidroside.
METHODSCells irradiated by UVB at various dosage and their viability was assessed by MTT assays, cell cycle was analysed by flow cytometry. The expression of NF-κB, BCL-2, and CDK6 after 50 J/m(2) UVB irradiation were detected by RT-PCR and western blotting.
RESULTSOur results confirmed greater tolerance of A341 cells to UVB-induced damage such as cell viability and cell cycle arrest, which was accompanied by differential expression changes in NF-κB, BCL-2, and CDK6. UVB exposure resulted in HaCaT cells undergoing G(1)-S phase arrest. When treated with salidroside, HaCaT survival was significantly enhanced following exposure to UVB, suggesting great therapeutic potential for this compound.
CONCLUSIONTaken together, our study suggests that A431 respond differently to UVB than normal HaCaT cells, and supports a role for NF-κB, CDK6, and BCL-2 in UVB-induced cell G(1)-S phase arrest. Furthermore, salidroside can effectively protect HaCaT from UVB irradiation.
Antioxidants ; pharmacology ; Apoptosis ; radiation effects ; Carcinoma, Squamous Cell ; Cell Cycle Checkpoints ; Cell Line, Tumor ; Cell Survival ; drug effects ; radiation effects ; Gene Expression Regulation, Neoplastic ; Glucosides ; pharmacology ; Humans ; Keratinocytes ; radiation effects ; Phenols ; pharmacology ; Ultraviolet Rays
7.Effect of combined application of psoralen and ultraviolet A for inducing NB4 cell apoptosis and its impact on Fas/FasL gene expressions.
Yang XIANG ; Shi-lin HUANG ; Nan-nan CHEN
Chinese Journal of Integrated Traditional and Western Medicine 2010;30(1):45-47
OBJECTIVETo explore the effect of combined application of psoralen (PSO, an extract from psoralea) and ultraviolet A (UVA) for inducing the apoptosis of human leukemic cell line NB4 and its impact on the Fas/FasL gene expressions.
METHODSAccording to factorial design, changes of apoptosis rate and ultrastructure of NB4 cells, as well as the gene and protein expressions of Fas/FasL were observed after cells were treated with PSO in different concentrations and irradiated by UVA of 360 nm wavelength for different times, using flow cytometry, transmission electron microscopy and quantitative polymerase chain reaction (PCR), and the outcomes were treated with variable analysis.
RESULTS(1) After treatment of PSO in concentration of 10, 20, 40, 80 microg/mL combined with a 5-min exposure of UVA, the NB4 cells apoptosis rate induced were 26.57% +/- 0.42%, 30.67% +/- 0.11%, 34.90% +/- 0.30% and 24.63% +/- 0.38% respectively. The effects were dose- and time-dependent, and an interaction was shown between the two actors. (2) After being treated by PSO plus UVA, obvious ultrastructure changes with apoptosis characteristics were shown in NB4 cell under electron microscope. (3) PSO plus UVA showed up-regulatory effect on gene and protein expressions of Fas, and down-regulatory effect on gene and protein expressions of FasL in a dose- and time-dependent manner, with the interaction between the two actors in altering Fas gene expression, also in altering FasL gene and protein expressions.
CONCLUSIONCombined application of PSO and UVA can induce the apoptosis of NB4 cells, and the Fas/FasL system is one of the pathways for apoptosis inducing.
Apoptosis ; drug effects ; radiation effects ; Cell Line, Tumor ; Fas Ligand Protein ; metabolism ; Ficusin ; pharmacology ; Gene Expression ; Gene Expression Regulation, Leukemic ; Humans ; Ultraviolet Rays ; fas Receptor ; metabolism
8.Cordycepin inhibits UVB-induced matrix metalloproteinase expression by suppressing the NF-kappa B pathway in human dermal fibroblasts.
Young Rae LEE ; Eun Mi NOH ; Eun Yong JEONG ; Seok Kweon YUN ; Young Ju JEONG ; Jong Hyeon KIM ; Kang Beom KWON ; Byeong Soo KIM ; Sung Ho LEE ; Chang Sik PARK ; Jong Suk KIM
Experimental & Molecular Medicine 2009;41(8):548-554
Cordycepin (3'-deoxyadenosine) has been shown to exhibit many pharmacological activities, including anti-cancer, anti-inflammatory, and anti-infection activities. However, the anti-skin photoaging effects of cordycepin have not yet been reported. In the present study, we investigated the inhibitory effects of cordycepin on matrix metalloproteinase-1 (MMP-1) and -3 expressions of the human dermal fibroblast cells. Western blot analysis and real-time PCR revealed cordycepin inhibited UVB-induced MMP-1 and -3 expressions in a dose-dependent manner. UVB strongly activated NF-kappa B activity, which was determined by I kappa B alpha degradation, nuclear localization of p50 and p65 subunit, and NF-kappa B binding activity. However, UVB-induced NF-kappa B activation and MMP expression were completely blocked by cordycepin pretreatment. These findings suggest that cordycepin could prevent UVB-induced MMPs expressions through inhibition of NF-kappa B activation. In conclusion, cordycepin might be used as a potential agent for the prevention and treatment of skin photoaging.
Aging/physiology
;
Cells, Cultured
;
Deoxyadenosines/*pharmacology
;
*Dermis/cytology/drug effects/physiology/radiation effects
;
Dose-Response Relationship, Drug
;
Enzyme Induction/drug effects
;
Fibroblasts/drug effects/metabolism/radiation effects
;
Gene Expression Regulation, Enzymologic
;
Humans
;
Infant, Newborn
;
Male
;
*Matrix Metalloproteinase 1/antagonists & inhibitors/biosynthesis/genetics/radiation effects
;
Matrix Metalloproteinase 3/antagonists & inhibitors/*biosynthesis/genetics/radiation effects
;
NF-kappa B/*antagonists & inhibitors/genetics/metabolism
;
Skin/physiopathology/radiation effects
;
*Ultraviolet Rays
9.Detection and prognostic significance of micrometastasis in peripheral blood of patients with non-small cell lung cancer treated by chemo-radiation therapy.
Ting-feng CHEN ; Guo-liang JIANG ; Yi-qin ZHANG ; Li-juan WANG ; Xiao-long FU ; Hao QIAN ; Kai-liang WU ; Sen ZHAO
Chinese Journal of Oncology 2007;29(5):365-368
OBJECTIVETo investigate the prognostic significance of micrometastasis (MM) in peripheral blood of patients with non-small cell lung cancer (NSCLC) treated by chemo-radiation therapy.
METHODSPeripheral blood was taken from 67 NSCLC patients before and after definitive chemo-radiation therapy. CK19 mRNA of the peripheral blood was measured by nested RT-PCR and both their relationship with clinicopathological features and prognostic significance were further investigated.
RESULTSThe micrometastasis-positive rates were 65.7% (44/67) and 32.8% (22/67), respectively, before and after the treatment. The micrometastasis-positive rate before treatment was closely in correlation with N-stage (P = 0.014). In contrast, it turned out to be more closely related with histological types (P = 0.019), weight loss (P = 0.01), KPS status (P = 0.027) as well as N-stage (P = 0.032) after chemo-radiation therapy. 4-yr distant metastasis rates (DMR) for micrometastasis-positive and -negative patients were 78.3% and 70.4%, respectively, before the treatment (P = 0.544) while they were 100% and 62.9%, respectively, after the chemoradiation (P < 0.001). The median survival time (MST) and 4-yr overall survival rate (OSR) for pretreatment micrometastasis-positive and -negative patients were 13.8 months and 17.6 months, and 18.2% and 17.4%, respectively (P = 0.619), while for post-treatment micrometastasis-positive and -negative patients they were 7.8 months and 27.6 months and 0 and 26.4%, respectively (P < 0.001). Multivariate analysis showed that the post-treatment positive micrometastasis was an independent unfavorable prognostic factor (P = 0.000).
CONCLUSIONDetection of micrometastasis in peripheral blood may possess a prognostic significance after definitive chemo-radiation therapy. Micrometastasis-negative patients have better prognosis compared to those with positive micrometastasis.
Antineoplastic Combined Chemotherapy Protocols ; therapeutic use ; Carcinoma, Non-Small-Cell Lung ; genetics ; pathology ; therapy ; Cisplatin ; administration & dosage ; Combined Modality Therapy ; Female ; Follow-Up Studies ; Gene Expression Regulation, Neoplastic ; drug effects ; radiation effects ; Humans ; Keratin-19 ; genetics ; Lung Neoplasms ; genetics ; pathology ; therapy ; Male ; Middle Aged ; Neoplasm Metastasis ; Neoplasm Recurrence, Local ; Neoplasm Staging ; Neoplastic Cells, Circulating ; drug effects ; pathology ; radiation effects ; Prognosis ; RNA, Messenger ; biosynthesis ; genetics ; Radiotherapy, High-Energy ; methods ; Reverse Transcriptase Polymerase Chain Reaction ; Survival Analysis
10.Green tea polyphenol epigallocatechin-3-gallate inhibits the expression of nitric oxide synthase and generation of nitric oxide induced by ultraviolet B in HaCaT cells.
Xiu-zu SONG ; Zhi-gang BI ; Ai-e XU
Chinese Medical Journal 2006;119(4):282-287
BACKGROUNDNitic oxide (NO) has been implicated in the pathogenesis of various inflammatory diseases, including sunburn and pigmentation induced by ultraviolet irradiation. Epigallocatechin-3-gallate (EGCG) is the major effective component in green tea and can protect skin from ultraviolet-induced damage. The purpose of this study was to investigate the protective mechanisms of EGCG on inducible nitric oxide synthase (iNOS) expression and NO generation by ultraviolet B (UVB) irradiation in HaCaT cells.
METHODSHaCaT cells were irradiated with UVB 30 mJ/cm 2 and pretreated with EGCG at varying concentrations. The iNOS mRNA was detected by reverse transcriptase polymerase chain reaction (RT-PCR) and NO production was quantified by spectrophotometric method. The expression of NF-kappaB P65 was measured by immunofluorescence cytochemistry staining.
RESULTSThe expression of iNOS mRNA and generation of NO in HaCaT cells were increased by UVB irradiation. EGCG down regulated the UVB-induced iNOS mRNA synthesis and NO generation in a dose dependent manner. The UVB-induced ctivation and translocation of NF-kappaB were also down regulated by EGCG treatment in HaCaT cells (P < 0.01).
CONCLUSIONSGreen tea derived-EGCG can inhibit and down regulate the UVB-induced activation and translocation of NF-kappaB, expression of iNOS mRNA and generation of NO respectively, indicating EGCG may play a protective role from UVB-induced skin damage.
Catechin ; analogs & derivatives ; pharmacology ; Cells, Cultured ; Gene Expression Regulation, Enzymologic ; drug effects ; Humans ; Keratinocytes ; metabolism ; radiation effects ; Nitric Oxide ; biosynthesis ; Nitric Oxide Synthase Type II ; genetics ; Protein Transport ; drug effects ; RNA, Messenger ; analysis ; Tea ; Transcription Factor RelA ; metabolism ; Ultraviolet Rays ; adverse effects

Result Analysis
Print
Save
E-mail