1.Effect of Qinghuang Powder () Combined with Bupi Yishen Decoction () in Treating Patients with Refractory Cytopenia with Multilineage Dysplasia through Regulating DNA Methylation.
Qing-Bing ZHOU ; Xiao-Hong YANG ; Hong-Zhi WANG ; De-Xiu WANG ; Yong-Gang XU ; Xiao-Mei HU ; Feng-Qin XU ; Rou MA
Chinese journal of integrative medicine 2019;25(5):354-359
OBJECTIVE:
To explore the effect of Qinghuang Powder (QHP,()combined with Bupi Yishen Decoction (BPYS, ) on myelodysplastic syndromes (MDS) patients with refractory cytopenia with multilineage dysplasia (RCMD) and determine the change of DNA methylation in MDS-RCMD patients after the treatment of Chinese medicine formula.
METHODS:
All 308 MDS-RCMD patients were treated with QHP combined with BPYS for 2 months at least, absolute neutrophil count (ANC), hemoglobin (Hb), platelets (PLT), primitive bone marrow cells and chromosome karyotype were chosen as the main evaluation indexes to analyze the treatment effect according to criteria from the MDS International Working Group. Then 43 bone marrow samples from 15 MDS-RCMD patients and 28 healthy donors were obtained for the examination of DNA methylation. Gene Ontology (GO) and Pathway analysis were applied to analyze the methylation data.
RESULTS:
The overall MDS response rate to QHP was 61.68% (190/360) including hematologic improvement-neutrophil (HI-N) or hematologic improvement-erythroid (HI-E) or hematologic improvement-platelet (HI-P). Patients with anemia had a better response rate than patients with neutropenia or thrombocypenia (55.88% vs 31.54% or 55.88% vs. 36.9%). The DNA methylation microarray analysis disclosed that 4,257 hypermethylated genes were demethylated upon the treatment with QHP and BPYS. GO analysis and Pathway analysis showed that these demethylated genes were involved in a lot of tumor-related pathways and functions.
CONCLUSIONS
QHP combined with BPYS could effectively treat MDS-RCMD patients through hematologic improvement (HI-N, HI-P or HI-E) and PLT and RBC transfusion independence due to the demethylation, thereby providing another choice for the treatment of patients with MDS-RCMD.
Arsenicals
;
administration & dosage
;
pharmacology
;
therapeutic use
;
Cell Lineage
;
drug effects
;
DNA Methylation
;
drug effects
;
Demethylation
;
Drugs, Chinese Herbal
;
administration & dosage
;
pharmacology
;
therapeutic use
;
Female
;
Gene Ontology
;
Humans
;
Leukocyte Disorders
;
drug therapy
;
genetics
;
Male
;
Middle Aged
;
Powders
;
Treatment Outcome
2.Systems pharmacology-based investigation of Sanwei Ganjiang Prescription: related mechanisms in liver injury.
Yun-Xia LUO ; Xin-Yue WANG ; Yu-Jie HUANG ; Shu-Huan FANG ; Jun WU ; Yong-Bin ZHANG ; Tian-Qin XIONG ; Cong YANG ; Jian-Gang SHEN ; Chuan-Lan SANG ; Qi WANG ; Jian-Song FANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(10):756-765
Liver injury remains a significant global health problem and has a variety of causes, including oxidative stress (OS), inflammation, and apoptosis of liver cells. There is currently no curative therapy for this disorder. Sanwei Ganjiang Prescription (SWGJP), derived from traditional Chinese medicine (TCM), has shown its effectiveness in long-term liver damage therapy, although the underlying molecular mechanisms are still not fully understood. To explore the underlining mechanisms of action for SWGJP in liver injury from a holistic view, in the present study, a systems pharmacology approach was developed, which involved drug target identification and multilevel data integration analysis. Using a comprehensive systems approach, we identified 43 candidate compounds in SWGJP and 408 corresponding potential targets. We further deciphered the mechanisms of SWGJP in treating liver injury, including compound-target network analysis, target-function network analysis, and integrated pathways analysis. We deduced that SWGJP may protect hepatocytes through several functional modules involved in liver injury integrated-pathway, such as Nrf2-dependent anti-oxidative stress module. Notably, systems pharmacology provides an alternative way to investigate the complex action mode of TCM.
Drugs, Chinese Herbal
;
administration & dosage
;
chemistry
;
Gene Expression
;
drug effects
;
Hepatocytes
;
drug effects
;
metabolism
;
Humans
;
Liver
;
drug effects
;
injuries
;
metabolism
;
Liver Diseases
;
drug therapy
;
genetics
;
metabolism
;
Oxidative Stress
;
drug effects
;
Pharmacology
3.Global gene expression analysis in liver of db/db mice treated with catalpol.
Jing LIU ; He-Ran ZHANG ; Yan-Bao HOU ; Xiao-Long JING ; Xin-Yi SONG ; Xiu-Ping SHEN
Chinese Journal of Natural Medicines (English Ed.) 2018;16(8):590-598
Catalpol, a major bioactive component from Rehmannia glutinosa, which has been used to treat diabetes. The present study was designed to elucidate the anti-diabetic effect and mechanism of action for catalpol in db/db mice. The db/db mice were randomly divided into six groups (10/group) according to their blood glucose levels: db/db control, metformin (positive control), and four dose levels of catalpol treatment (25, 50, 100, and 200 mg·kg), and 10 db/m mice were used as the normal control. All the groups were administered orally for 8 weeks. The levels of fasting blood glucose (FBG), random blood glucose (RBG), glucose tolerance, insulin tolerance, and glycated serum protein (GSP) and the globe gene expression in liver tissues were analyzed. Our results showed that catalpol treatment obviously reduced water intake and food intake in a dose-dependent manner. Catalpol treatment also remarkably reduce fasting blood glucose (FBG) and random blood glucose (RBG) in a dose-dependent manner. The RBG-lowering effect of catalpol was better than that of metformin. Furthermore, catalpol significantly improved glucose tolerance and insulin tolerance via increasing insulin sensitivity. Catalpol treatment significantly decreased GSP level. The comparisons of gene expression in liver tissues among normal control mice, db/db mice and catalpol treated mice (200 and 100 mg·kg) indicated that there were significant increases in the expressions of 287 genes, whichwere mainly involved in lipid metabolism, response to stress, energy metabolism, and cellular processes, and significant decreases in the expressions of 520 genes, which were mainly involved in cell growth, death, immune system, and response to stress. Four genes expressed differentially were linked to glucose metabolism or insulin signaling pathways, including Irs1 (insulin receptor substrate 1), Idh2 (isocitrate dehydrogenase 2 (NADP), mitochondrial), G6pd2 (glucose-6-phosphate dehydrogenase 2), and SOCS3 (suppressor of cytokine signaling 3). In conclusion, catalpol ecerted significant hypoglycemic effect and remarkable therapeutic effect in db/db mice via modulating various gene expressions.
Animals
;
Blood Glucose
;
metabolism
;
Diabetes Mellitus, Experimental
;
drug therapy
;
genetics
;
metabolism
;
Disease Models, Animal
;
Dose-Response Relationship, Drug
;
Drugs, Chinese Herbal
;
administration & dosage
;
analysis
;
Gene Expression
;
drug effects
;
Glucosephosphate Dehydrogenase
;
genetics
;
metabolism
;
Humans
;
Hypoglycemic Agents
;
administration & dosage
;
Insulin
;
metabolism
;
Insulin Receptor Substrate Proteins
;
genetics
;
metabolism
;
Iridoid Glucosides
;
administration & dosage
;
analysis
;
Isocitrate Dehydrogenase
;
genetics
;
metabolism
;
Liver
;
drug effects
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Rehmannia
;
chemistry
;
Suppressor of Cytokine Signaling 3 Protein
;
genetics
;
metabolism
4.Characterization and Expression Analysis of Peroxiredoxin Genes in NNK-induced V79 Cells.
Gui Qin SHI ; Wen Shan ZHOU ; Meng LI ; Fei REN ; Ya Wei HAN
Biomedical and Environmental Sciences 2017;30(3):224-228
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) is a potent and prevalent nitrosamine procarcinogen found in cigarette smoke. The aim of this work is to study alterations in peroxiredoxin (Prx) expression induced by NNK during carcinogenesis. Characterization of Prx genes from hamster was performed using bioinformatics. V79 cells were induced with different concentrations of NNK (0.1-0.4 mg/mL), and the expression levels of six Prx genes (Prx1-Prx6) were measured by qRT-PCR 24 h following NNK treatment. Prx gene expression was induced by NNK stress, and the highest transcription levels were induced by over 20.42-fold relative to that of the control. NNK induced alterations in Prx expression over the course of lung cancer, which means Prxs may play important roles in ROS detoxification under NNK stress and their functions are complementary.
Animals
;
Carcinogens
;
administration & dosage
;
toxicity
;
Cell Line
;
Cell Survival
;
Cricetinae
;
Cricetulus
;
Dose-Response Relationship, Drug
;
Gene Expression Regulation
;
drug effects
;
Nitrosamines
;
administration & dosage
;
toxicity
;
Peroxiredoxins
;
genetics
;
metabolism
5.Clinicopathological Implications of Mitochondrial Genome Alterations in Pediatric Acute Myeloid Leukemia.
Min Gu KANG ; Yu Na KIM ; Jun Hyung LEE ; Michael SZARDENINGS ; Hee Jo BAEK ; Hoon KOOK ; Hye Ran KIM ; Myung Geun SHIN
Annals of Laboratory Medicine 2016;36(2):101-110
BACKGROUND: To the best of our knowledge, the association between pediatric AML and mitochondrial aberrations has not been studied. We investigated various mitochondrial aberrations in pediatric AML and evaluated their impact on clinical outcomes. METHODS: Sequencing, mitochondrial DNA (mtDNA) copy number determination, mtDNA 4,977-bp large deletion assessments, and gene scan analyses were performed on the bone marrow mononuclear cells of 55 pediatric AML patients and on the peripheral blood mononuclear cells of 55 normal controls. Changes in the mitochondrial mass, mitochondrial membrane potential, and intracellular reactive oxygen species (ROS) levels were also examined. RESULTS: mtDNA copy numbers were about two-fold higher in pediatric AML cells than in controls (P<0.0001). Furthermore, a close relationship was found between mtDNA copy number tertiles and the risk of pediatric AML. Intracellular ROS levels, mitochondrial mass, and mitochondrial membrane potentials were all elevated in pediatric AML. The frequency of the mtDNA 4,977-bp large deletion was significantly higher (P< 0.01) in pediatric AML cells, and pediatric AML patients harboring high amount of mtDNA 4,977-bp deletions showed shorter overall survival and event-free survival rates, albeit without statistical significance. CONCLUSIONS: The present findings demonstrate an association between mitochondrial genome alterations and the risk of pediatric AML.
Bone Marrow Cells/metabolism
;
Case-Control Studies
;
Child
;
Cohort Studies
;
DNA, Mitochondrial/chemistry/genetics/metabolism
;
Female
;
Flow Cytometry
;
Gene Deletion
;
Gene Dosage
;
*Genome, Mitochondrial
;
Humans
;
Leukemia, Myeloid, Acute/genetics/mortality/*pathology
;
Male
;
Membrane Potential, Mitochondrial
;
Minisatellite Repeats/genetics
;
Odds Ratio
;
Reactive Oxygen Species/metabolism
;
Sequence Analysis, DNA
;
Survival Rate
6.Immune Response of Recombinant Pseudorabies Virus rPRV-VP2 Expressing VP2 Gene of Porcine Parvovirus in Mice.
Pengfei FU ; Xinlong PAN ; Qiao HAN ; Xingwu YANG ; Qianlei ZHU ; Xiaoqing GUO ; Yu ZHANG ; Hongying CHEN
Chinese Journal of Virology 2016;32(2):195-202
In order to develop a combined live vaccine that will be used to prevent against porcine parvovirus (PPV) and Pseudorabies virus (PRV) infection, the VP2 gene of PPV was inserted into the transfer vector plasmid pG to produce the recombinant plasmid pGVP2. The plasmid pGVP2 and the genome of PRV HB98 attenuated vaccine were transfected by using lipofectamine into swine testis cells for the homologous recombination. The recombinant virus rPRV-VP2 was purified by selection of green fluorescence plaques for five cycles. 6-week-old female Kunming mice were immunized intramuscularly with attenuated PRV parent HB98 strain, commercial inactivated vaccine against PPV, recombinant virus, DMEM culture solution. The injections were repeated with an equivalent dose after 2 weeks in all of the groups, and then challenged with the virulent PRV NY strain at 7 weeks after the first immunization. The recombinant virus rPRV-VP2 was successfully generated, and the recombinant virus could effectively elicite anti-PPV and PRV antibody and significant cellular immune response as indicated by anti-PPV ELISA and HI, PRV-neutralizing assay and flow cytometry. The challenge assay indicated that recombinant virus could protect the mice against the virulent PRV challenge. These results demonstrated that the recombinant virus can be a candidate recombinant vaccine strain for the prevention of PRV and PPV.
Animals
;
Antibodies, Viral
;
immunology
;
Antigens, Viral
;
administration & dosage
;
genetics
;
immunology
;
Capsid Proteins
;
administration & dosage
;
genetics
;
immunology
;
Female
;
Gene Expression
;
Genetic Vectors
;
genetics
;
metabolism
;
Herpesvirus 1, Suid
;
genetics
;
metabolism
;
Mice
;
Parvovirus, Porcine
;
genetics
;
immunology
;
Swine
;
Swine Diseases
;
immunology
;
prevention & control
;
virology
;
Viral Vaccines
;
administration & dosage
;
genetics
;
immunology
7.Study on Cellular Immune Responses of DNA Vaccine, rAd5 and rMVA Expressing SIV Gag/Env Gene Combined Immunization in Mice.
Xiaozhou HE ; Danying CHEN ; Wandi WANG ; Ke XU ; Yi ZENG ; Xia FENG
Chinese Journal of Virology 2016;32(2):170-178
Therapeutic HIV vaccine was considered as a hopeful curative method for AIDS patients. However, there is still no suitable HIV animal model for vaccine study since the difference in the immune system between human and animals. To evaluate the therapeutic effect of combined immunization strategy with multiple vector vaccines in macaque models. Plasmid DNA, recombinant Ad5 and MVA vaccines which expressing SIV gag and env genes were constructed. Sequential and repeated immune strategy were applied to immunize mice with these three vaccines. Cellular immune responses in mice immunized with these three vaccines were measured by ELISPOT test in vitro and CTL assay in vivo. The results were analyzed and compared with different antigen combination, order of vaccines and intervals to choose a suitable immunization strategy for macaque immunization in future. It indicated that strong SIV-Gag/Env-specific cellular immune responses were induced by these three vector vaccines. It laid a foundation for evaluating the therapeutic effect of combined immunization strategy with multiple vector vaccines in SIV infected macaque models.
AIDS Vaccines
;
administration & dosage
;
genetics
;
immunology
;
Adenoviridae
;
genetics
;
metabolism
;
Animals
;
Antibodies, Viral
;
immunology
;
Female
;
Gene Products, env
;
administration & dosage
;
genetics
;
immunology
;
Gene Products, gag
;
administration & dosage
;
genetics
;
immunology
;
Genetic Vectors
;
genetics
;
metabolism
;
HIV Infections
;
immunology
;
prevention & control
;
virology
;
Humans
;
Immunization
;
Mice
;
Mice, Inbred BALB C
;
Simian Immunodeficiency Virus
;
genetics
;
immunology
;
Vaccines, DNA
;
administration & dosage
;
genetics
;
immunology
8.Inhibition of calpain on oxygen glucose deprivation-induced RGC-5 necroptosis.
Shuang CHEN ; Jie YAN ; Hai-Xiao DENG ; Ling-Ling LONG ; Yong-Jun HU ; Mi WANG ; Lei SHANG ; Dan CHEN ; Ju-Fang HUANG ; Kun XIONG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(5):639-645
The purpose of this study was to investigate the effect of inhibition of calpain on retinal ganglion cell-5 (RGC-5) necroptosis following oxygen glucose deprivation (OGD). RGC-5 cells were cultured in Dulbecco's-modified essential medium and necroptosis was induced by 8-h OGD. PI staining and flow cytometry were performed to detect RGC-5 necrosis. The calpain expression was detected by Western blotting and immunofluorescence staining. The calpain activity was tested by activity detection kit. Flow cytometry was used to detect the effect of calpain on RGC-5 necroptosis following OGD with or without N-acetyl-leucyl-leucyl-norleucinal (ALLN) pre-treatment. Western blot was used to detect the protein level of truncated apoptosis inducing factor (tAIF) in RGC-5 cells following OGD. The results showed that there was an up-regulation of the calpain expression and activity following OGD. Upon adding ALLN, the calpain activity was inhibited and tAIF was reduced following OGD along with the decreased number of RGC-5 necroptosis. In conclusion, calpain was involved in OGD-induced RGC-5 necroptosis with the increased expression of its downstream molecule tAIF.
Animals
;
Apoptosis Inducing Factor
;
biosynthesis
;
genetics
;
Calpain
;
biosynthesis
;
genetics
;
Gene Expression Regulation
;
drug effects
;
Glucose
;
metabolism
;
Humans
;
Leupeptins
;
administration & dosage
;
Mice
;
Oxygen
;
metabolism
;
Retinal Ganglion Cells
;
metabolism
;
pathology
;
Retinal Necrosis Syndrome, Acute
;
genetics
;
pathology
9.Telmisartan reduced cerebral edema by inhibiting NLRP3 inflammasome in mice with cold brain injury.
Xin WEI ; Chen-Chen HU ; Ya-Li ZHANG ; Shang-Long YAO ; Wei-Ke MAO
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):576-583
The aim of this study was to investigate the possible beneficial role of telmisartan in cerebral edema after traumatic brain injury (TBI) and the potential mechanisms related to the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) inflammasome activation. TBI model was established by cold-induced brain injury. Male C57BL/6 mice were randomly assigned into 3, 6, 12, 24, 48 and 72 h survival groups to investigate cerebral edema development with time and received 0, 5, 10, 20 and 40 mg/kg telmisartan by oral gavage, 1 h prior to TBI to determine the efficient anti-edemic dose. The therapeutic window was identified by post-treating 30 min, 1 h, 2 h and 4 h after TBI. Blood-brain barrier (BBB) integrity, the neurological function and histological injury were assessed, at the same time, the mRNA and protein expression levels of NLRP3 inflammasome, IL-1β and IL-18 concentrations in peri-contused brain tissue were measured 24 h post TBI. The results showed that the traumatic cerebral edema occurred from 6 h, reached the peak at 24 h and recovered to the baseline 72 h after TBI. A single oral dose of 5, 10 and 20 mg/kg telmisartan could reduce cerebral edema. Post-treatment up to 2 h effectively limited the edema development. Furthermore, prophylactic administration of telmisartan markedly inhibited BBB impairment, NLRP3, apoptotic speck-containing protein (ASC) and Caspase-1 activation, as well as IL-1β and IL-18 maturation, subsequently improved the neurological outcomes. In conclusion, telmisartan can reduce traumatic cerebral edema by inhibiting the NLRP3 inflammasome-regulated IL-1β and IL-18 accumulation.
Animals
;
Benzimidazoles
;
administration & dosage
;
Benzoates
;
administration & dosage
;
Blood-Brain Barrier
;
drug effects
;
Brain Edema
;
drug therapy
;
genetics
;
pathology
;
Brain Injuries, Traumatic
;
drug therapy
;
genetics
;
pathology
;
Caspase 1
;
biosynthesis
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Inflammasomes
;
adverse effects
;
genetics
;
Interleukin-18
;
biosynthesis
;
Interleukin-1beta
;
biosynthesis
;
Male
;
Mice
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
biosynthesis
;
genetics
;
Signal Transduction
;
drug effects
10.Mcl-1 as a potential therapeutic target for human hepatocelluar carcinoma.
Qin YU ; Zhao-Yu LIU ; Qiong CHEN ; Ju-Sheng LIN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(4):494-500
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality in part due to its high resistance to chemotherapeutic drugs. The anti-apoptotic Mcl-1 expression has been reported as a resistance factor in various types of tumors. Here, we investigated the expression of Mcl-1 in hepatoma cells and HCC tissues and its relationship with p53, and analyzed the possibility of the gene as a molecular target for HCC therapy. HCC specimens of 30 patients were examined by immunohistochemistry for Mcl-1 and p53 expression. Mcl-1 expression in hepatoma cell lines was measured by RT-PCR and Western blotting. The suppression of Mcl-1 by RNA interference or specific phosphatidylinositol-3 kinase (PI3K) inhibitor, LY294002, was evaluated as monotherapy, and it was combined with mitomycin C (MMC) in treating hepatoma cell line HepG2. Cell viability and apoptosis were assessed by MTT and FACS analysis. Finally, changes of Mcl-1 or p53 expression in various hepatoma cell lines were examined after transfection with Mcl-1 siRNA, the Mcl-1 expression plasmid, or the wide-type p53 expression plasmid, respectively. Mcl-1 protein was remarkably enhanced in HCC tissues as compared with adjacent non-tumor liver tissues. In addition, Mcl-1 was prominently expressed in HepG2 and Hep3B cells, weakly in SMMC7721 cells, and not in L02 cells. P53 protein was also overexpressed in HCC tissues and there was a significant correlation between the expression of p53 and Mcl-1. Silencing Mcl-1 by RNAi or LY294002 downregulated Mcl-1 expression and led to decreased cell viability and increased apoptosis. Combination of MMC and Mcl-1 RNAi or LY294002 exhibited a significant chemosensitizing effect. The expression of p53 was not influenced by Mcl-1 siRNA in HepG2 cells or transfection with the Mcl-1 expression plasmid in L02 cells. Furthermore, the expression of Mcl-1 in Hep3B cells was also not significantly changed after transfection with the wild-type p53 expression plasmid. It is concluded that Mcl-1 is overexpressed in HCC tissues. The mechanisms by which silencing Mcl-1 sensitizes hepatoma cells towards chemotherapy may be not attributed to the upregulated expression of p53 but the dysfunction of p53 through Mcl-1/p53 interaction. Mcl-1 may be a potential target of gene therapy for HCC.
Adenoma, Liver Cell
;
drug therapy
;
genetics
;
pathology
;
Apoptosis
;
drug effects
;
Biomarkers, Tumor
;
biosynthesis
;
genetics
;
Chromones
;
administration & dosage
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
drug therapy
;
genetics
;
pathology
;
Morpholines
;
administration & dosage
;
Myeloid Cell Leukemia Sequence 1 Protein
;
biosynthesis
;
genetics
;
RNA, Small Interfering
;
genetics
;
Transfection
;
Tumor Suppressor Protein p53
;
biosynthesis
;
genetics

Result Analysis
Print
Save
E-mail